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Michael Ehrig, Catharina Stroppel∗

Abstract. We study the combinatorics of the category F of finite-dimensional modules
for the orthosymplectic Lie supergroup OSp(r | 2n). In particular we present a positive
counting formula for the dimension of the space of homomorphism between two projective
modules. This refines earlier results of Gruson and Serganova. For each block B we
construct an algebra AB whose module category shares the combinatorics with F . It
arises as a subquotient of a suitable limit of type D Khovanov algebras. It turns out that
AB is isomorphic to the endomorphism algebra of a minimal projective generator of F .
This provides a direct link from F to parabolic categories O of type B/D, with maximal
parabolic of type A, to the geometry of isotropic Grassmannians of types B/D and to
Springer fibres of type C/D. We also indicate why F is not highest weight in general.
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I. Introduction

Fix as ground field the complex numbers C. This is the first part of a series of three
papers, where we describe the category C of finite-dimensional representations
of the orthosymplectic Lie supergroup G = OSp(r|2n) equivalently the finite-
dimensional integrable representations of the orthosymplectic Lie superalgebra g =
osp(r|2n). In particular we are interested in the combinatorics and the structure
of the locally finite endomorphism ring of a projective generator of this category.
(To be more precise: a projective generator only exists as a pro-object, but we
still call it a projective generator and refer to [BD16, Theorem 2.4] for a detailed
treatment of such a situation.)

Our main result is an explicit description of the endomorphism ring of a min-
imal projective generator for any block B in C. We first describe in detail the
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underlying vector space in Theorem A, and then formulate the endomorphism the-
orem in Theorem B. As a consequence we deduce that the endomorphism algebra
can be equipped with a Z-grading. The definitions and results are illustrated by
several examples. Theorem A provides an elementary way to compute dimensions
of homomorphism spaces between projective objects, and Theorem B allows a con-
crete description of the corresponding categories. In small examples, we provide a
description of the category C in terms of a quiver with relations.

The proof of Theorem B will appear in Part II, but we explain here the main
ideas of the proof and the important and new phenomena which appear on the way.
We believe that they are interesting on their own and also provide a conceptual
explanation for the lack of desired properties of the category C (in comparison to
the type A case). The arguments required for the complete proof of Theorem B
will appear in Part II, together with several applications to the representation
theory. We also defer to Part II the proof of Lemma 2.17, which is a rather easy
observation as soon as the theory of Jucys-Murphys elements for Brauer algebras
is available (which will be the case in Part II).

Understanding the representation theory of algebraic supergroups and in par-
ticular their category C of finite-dimensional representations is an interesting and
difficult task with several major developments in recent years. We refer to the
articles [Ser14], [Bru14], [MW14] for a nice description and overview of the state of
art. Despite these remarkable results, in particular for the general linear case, but
also for the category O for classical Lie superalgebras, there is still an amazingly
poor understanding of the category C outside of type A.

At least for the orthosymplectic case we can provide here some new insights
into the structure of these categories by giving a construction of endomorphism
algebras of projective objects in C.

Our results are in spirit analogous to [BS12b] and many of the applications
deduced there for the general linear Lie superalgebra can be deduced here as well
(investigated in detail in Parts II and III). The orthosymplectic case however re-
quires new arguments and a totally new line of proof. There are several subtle
differences which make the case treated here substantially harder, the proofs more
involved and conceptually different. The categories are much less well behaved
than in type A. To prove the main Theorem B we first need to develop the ba-
sic underlying combinatorics for the orthosymplectic case, make it accessible for
explicit calculations and also for categorification methods, then use non-trivial re-
sults from the representation theory of Brauer algebras and the Schur-Weyl duality
for orthosymplectic Lie supergroups, and finally connect both with the theory of
Khovanov algebras of type D. On the way we explain why (and to which extent)
these categories are not highest weight, but we still manage to describe their com-
binatorics in terms of certain maximal parabolic Kazhdan-Lusztig polynomials of
type D (or equivalently B by [ES15, 9.7]).

The main results and the idea of the proof. To explain our results in more
detail, fix r, n ∈ Z≥0 and consider a vector superspace, that is a Z2-graded vector
space, V = V0 ⊕ V1 of superdimension (r|2n) with its Lie superalgebra gl(V ) of
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endomorphisms, see Section 1 for a precise definition. Then g = osp(r|2n) is the
Lie super subalgebra of gl(V ) which leaves invariant a fixed non-degenerate super-
symmetric bilinear form β on V (that is a form of degree zero, symmetric on V0

and antisymmetric on V1), and G = OSp(r|2n) is the corresponding supergroup
of automorphisms preserving this form. In particular, the extremal cases r = 0
respectively n = 0 give the classical simple Lie algebras so(r) respectively sp(2n)
with the corresponding orthogonal and symplectic groups.

(?) For simplicity, we restrict ourselves in this introduction to the case where
r = 2m+ 1 is odd.

Now consider the category C′ of finite-dimensional representations of the super-
group G′ = SOSp(r|2n), or equivalently of finite-dimensional representations for
its Lie algebra g in the sense of [Ser11], [Ser14]. Like in the ordinary semisimple
Lie algebra case, simple objects in C′ are, up to a parity shift π, the highest weight
modules Lg(λ) which arise as quotients of Verma modules whose highest weights λ
are integral and dominant. Hence for each such λ we have two irreducible represen-
tations, Lg(λ) and πLg(λ) in the category C′. More precisely C′ decomposes into
a sum of two equivalent categories C′ = F ′ ⊕ π(F ′), such that the simple objects
in F ′ are labelled by integral dominant weights. In particular, it suffices to study
the category F ′. Similarly to (?) we obtain the categories C and F if we work
with G = OSp(r|2n). Under our assumption, an irreducible object in F is just an
irreducible object in F ′ together with an action of the nontrivial element σ ∈ G,
not contained in G′, by ±1 (see Proposition 2.6). Let X+(G) be the labelling set
of irreducible objects in F .

In contrast to the ordinary semsimple Lie algebra case, finite-dimensional rep-
resentations of g are in general not completely reducible. Already the tensor prod-
ucts V ⊗d of the natural representations V need not be1. One goal of our series
of papers is to understand possible extensions between simple modules and the
decomposition of V ⊗d.

The category F is an interesting abelian tensor category with enough projective
and injective modules (which in fact coincide, [BKN11, Proposition 2.2.2]). We
have therefore a non-semisimple 0-Calabi-Yau category which has additionally a
monoidal structure.

The indecomposable projective modules are precisely the projective covers P (λ)
of the simple objects L(λ) for λ ∈ X+(G). Given a block B of C there is the notion
of atypicality or defect, def(B), which measures the non-semisimplicity of the block.
In case the atypicality is zero, the block is semisimple. In general, our Theorem B
implies that the Loewy length of any projective module in B equals 2 def(B) + 1.
We expect that, up to equivalence, the block B is determined by its atypicality,
[GS10, Theorem 2], see also Remark 6.6.

Remark. Our assumption (?) on r simplifies the setup in this introduction, since
usually people (including also the above cited references) would consider the cat-

1They are in fact semsimple in case of the general linear Lie superalgebra by the Schur-Weyl
duality theorem of Sergeev [Ser84] and Berele-Regev [BR87], see [BS12a, Theorem 7.5], but in
general not semisimple for osp(r|2n), see [ES14, (1.1), Remark 3.3].
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egory of finite-dimensional representations for the group G′ = SOSp(r|2n) instead
of the group G = OSp(r|2n). In case r is odd, this makes no difference, since via
the isomorphism of groups (1.4) below, the representation theory does not change
in the sense that any block for G′ gives rise to two equivalent blocks for G, each of
which is equivalent to the original block for G′, see Section 2.2.1. In the even case
the interplay is more involved, see Section 2.2.2. We prefer to work with OSp(r|2n)
instead of SOSp(r|2n), for instance because it allows us to make a connection to
Deligne categories [Del96], [CH15] and Brauer algebras [Bra37].

Dimension formula. To access the dimension of HomF (P (λ), P (µ)), for λ, µ ∈
X+(G), we encode the highest weights λ and µ in terms of diagrammatic weights λ
and µ in the spirit of [BS11a], see Definition 4.6. Such a diagrammatic weight, see
Definition 3.1, is a certain infinite sequence of symbols from {×, ◦,∧,∨}, with the
property that two weights λ and µ are in the same block (abbreviating that L(λ)
and L(µ) are in the same block), if and only if the core symbols × and ◦ of the
associated diagrammatic weights are at the same positions and the parities of ∧’s
agree, see also Proposition 6.2 for a more precise statement. From Proposition 6.2
it also follows that the set Λ(B) of diagrammatic weights attached to a block B is
contained in a diagrammatic block Λ in the sense of [ES15, 2.2].

Following [ES15] we attach to the diagrammatic weights λ and µ via Defini-
tion 3.10 a pair of cup diagrams λ, µ. If they have the same core symbols one
can put the second on top of the first to obtain a circle diagram λµ. Our main
combinatorial result (Theorem 5.1) is a counting formula for the dimensions:

Theorem A. The dimension of HomF (P (λ), P (µ)) equals the number of orienta-
tions λνµ of λµ if the circle diagram λµ is defined and contains no non-propagating
line, and the dimension is zero otherwise.

By an orientation we mean another diagrammatic weight ν from the same block
which, when putting it into the middle of the circle diagram, makes it oriented in
the sense of Definition 3.17. In other words, we factorize the symmetric Cartan
matrix C (see Theorem 2.18) into a product C = AAT with positive integral entries.

In [ES15, 6.1] it was explained how to introduce an algebra structure DΛ on the
vector space with basis all oriented circle diagrams λνµ, where λ, µ, ν ∈ Λ. This
algebra is called the Khovanov algebra of type2 D attached to the (diagrammatic)
block Λ. By [ES15, Theorem 6.2] it restricts to an algebra structure on the vector
space DΛ(B) spanned by all circle diagrams λνµ with λ, µ ∈ Λ(B) via the obvious
idempotent truncation. Let 1B be the corresponding idempotent projecting onto
this subalgebra and consider the idempotent truncation 1BDΛ1B. To make the
connection with the combinatorics of Theorem A, we prove in Proposition 5.3 that
its oriented circle diagrams which contain at least one non-propagating line, span
an ideal I in 1BDΛ1B. We call this the nuclear ideal and its elements nuclear
morphisms.

2Some readers might prefer to see here Khovanov algebras of type B appearing, but as shown
in [ES15, 9.7], this is just a matter of perspective: a Khovanov algebra of type Bn is isomorphic
to one of type Dn+1.
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Now our main theorem is the following, where P = ⊕λ∈Λ(B)P (λ) is a minimal
projective generator of the chosen block B.

Theorem B. There is an isomorphism of algebras

1BDΛ1B/I ∼= Endfin
F (P ).

Here, Endfin
F (P ) = ⊕λ∈Λ(B) HomF (P (λ), P ) denotes the locally finite endomor-

phism ring of P . This locally finiteness adjustment is necessary, since the labelling
set Λ(B) of the indecomposable projective modules in B is infinite, and so we have
to work with infinite blocks of diagrammatic weights. But we like to stress that
for any chosen finite sum ⊕λ∈J⊂Λ(B)P (λ), the corresponding (ordinary) endomor-
phism ring is automatically finite dimensional. In practise, the endomorphism ring
can then be computed in a quotient of an appropriate Khovanov algebra (of type
D or equivalently of type B) attached to a finite diagrammatic block.

Since DΛ is by construction a (non-negatively) Z-graded algebra, and I is a
graded ideal, we deduce that

Corollary C. 1BDΛ1B/I ∼= Endfin
F (P ) is a graded algebra.

In analogy to the general linear supergroup case, [BS12b], it is natural to expect
that this grading is in fact a Koszul grading in the sense of [MOS09] which is a
version of [BGS96] for locally finite algebras with infinitely many idempotents. This
expectation is easy to verify for OSp(3|2) using the description from Section II.5.

Conjecture D. The algebra Endfin
F (P ) is Koszul.

The Khovanov algebras DΛ of type D for finite diagrammatic blocks arose
originally from classical highest weight Lie theory, since they describe blocks of
parabolic category O of type D or equivalently of type B with maximal parabolic of
type A, see [ES15, Theorem 9.1 and Theorem 9.22], and hence describe the category
of perverse sheaves on isotropic Grassmannians. They also have an interpretation
in the context of the geometry of the Springer fibers of type D or C for nilpotent
elements corresponding to two-row partitions, [ES12], [Wil15].

Our infinite diagrammatic weights Λ can be interpreted as elements in an ap-
propriate limit of a sequence of finite diagrammatic weights. As in [BS11a] the
resulting algebras DΛ could then also be viewed as a limit of algebras DΛn for
certain finite blocks Λn. Hence, up to the ideal I, our main theorem connects the
category F to classical (that means non-super) infinite-dimensional highest weight
Lie theory and classical (i.e. non-super) geometry in an appropriate limit. This
is similar to the result for the general linear supergroups, [BS12b, Theorem 1.2].
It is also a shadow of the so-called super duality conjectures [CLW11], but in a
subtle variation, since we deal here with finite-dimensional representations instead
of the highest weight category O. Moreover, taking this limit for type D Khovanov
algebras is technically more difficult than in type A, since the (naive) parallel con-
struction mimicking the type A case would produce infinite weights with infinite
defect. To circumvent this problem we apply a diagrammatic trick and introduce
so-called frozen vertices which force our infinite cup diagramms to have a finite



Finite-dimensional representations of OSp(r|2n) 7

number of cups, see Definition 4.6, which means the defect stays finite. This pro-
cedure crucially depends on r and n. We expect that this diagrammatic trick also
provides the passage between the limit categories introduced in [Ser14] and the
category F .

Gruson-Serganova combinatorics. The proof of Theorem A is heavily based
on the main combinatorial results of Gruson and Serganova, [GS10] and [GS13],
who also introduced a version of cup diagram combinatorics for SOSp(r|2n) very
similar to ours. An explicit translation between the two set-ups is given below in
(6.51). There are however some small, but important differences in our approaches:

• Gruson and Serganova work with certain natural, but virtual modules in the
Grothendieck group (the Euler characteristics E(λ)), whereas our combina-
torics relies on actual filtrations of the projective modules with the subquo-
tients being shadows of cell modules for the Brauer algebra.

• Gruson and Serganova’s formulas are alternating summation formulas, while
ours are positive counting formulas.

• Gruson and Serganova work with the special orthosymplectic group, whereas
we work with the orthosymplectic group, which is better adapted to the
diagram combinatorics and connects directly to the representation theory of
Brauer algebras via [Ser14, Theorem 3.4], [LZ15, Theorem 5.6].

• Gruson and Serganova’s cup diagram combinatorics unfortunately does not
give a direct connection to the theory of Hecke algebras and Kazhdan-Lusztig
polynomials, whereas our Khovanov algebra of type D is built from the
Kazhdan-Lusztig combinatorics of the hermitian symmetric pair (Dn,An−1),
see [LS12], [ES15].

Comparing Theorem A with [BS11b, (5.15)] and [BS12b, Theorem 2.1], our
formulas indicate that one could expect some highest weight structure or at least
some cellularity of each block B of F explaining our positive counting formulas
and appearance of Kazhdan-Lusztig polynomials. But blocks of F are not highest
weight and not even cellular in general, as the example from Section II illustrates,
and there are no obvious candidates for cell modules. This is a huge difference to
the case of gl(m|n), where parabolic induction of a finite-dimensional representa-
tion of the Levi subalgebra gl(m|n)0 = gl(m)⊕gl(n) produces a finite-dimensional
Kac module. These modules are the standard modules for the highest weight struc-
ture of the category of integrable finite-dimensional representations in that case,
see [Bru03, Theorem 4.47] or [BS12b, Theorem 1.1]. Such a parabolic subalgebra,
and hence such a class of modules is however not available for g = osp(r|2n) if
r ≥ 2, n ≥ 1. Nevertheless, we claim that our counting formula arises from some
natural filtrations on projective objects, whose origin we like to explain now.

Tensor spaces and Brauer algebras. The tensor spaces V ⊗d for d ≥ 0 from
above already contain in some sense the complete information about the category
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F . Namely, each indecomposable projective P (λ) occurs in V ⊗d for some large
enough d, see e.g. [CH15, Lemma 7.5]. By weight considerations and the action
of σ one can easily check that HomG(V ⊗d, V ⊗d

′
) = {0} if d and d′ have different

parity (see also Remark I). Hence to understand the spaces of morphisms between
projective modules in a fixed block B of F , it suffices to consider the tensor spaces
for each parity of d separately. Moreover, since the trivial representation appears
as a quotient of V ⊗ V (via the pairing given by β), we have a surjection P ⊗ V ⊗
V→→P ⊗ C = P which splits if P is projective. Thus we obtain the following:

Lemma E. Let J ⊂ Λ(B) be a finite subset of weights such that all P (λ) are in
the same block B of F . Then P ′ = ⊕λ∈JP (λ) appears as a direct summand of V ⊗d

for some large enough d.

To achieve our goal (to determine the endomorphism ring of all such P ′) we
first consider endomorphisms of these tensor spaces V ⊗d. For this we use a super
analogue of a result from classical invariant theory of the semisimple orthogonal
and symplectic Lie algebras studied by Brauer in [Bra37].

For fixed d ∈ Z≥0 and δ ∈ C, the Brauer algebra Brd(δ) is an algebra structure
on the vector space with basis all equivalence classes of Brauer diagrams for d.
A Brauer diagram for d is a partitioning of the set {±1,±2, . . . ,±d} into two
element subsets. One can display this by identifying ±j with the point (j,±1) in
the plane and connect two points in the same subset by an arc inside the rectangle
[1, d]× [−1, 1]. Here is an example of a Brauer diagram for d = 11:

(1.1)

Given two Brauer diagrams D1 and D2 we can stack D2 on top of D1. The
result is again a Brauer diagram D after we removed possible internal loops and
the process is independent of the chosen visualization. Setting D1D2 = δcD,
where c is the number of internal loops removed, defines the associative algebra
structure Brd(δ) on the vector space with basis given by Brauer diagrams. Here is
an example of the product of two basis vectors:

• = δ
(1.2)

We use the following important result.

Proposition F ([Ser14, Theorem 3.4], [LZ14a, Theorem 5.6]). Let δ = r − 2n.
Then the canonical algebra homomorphism

Brd(δ) →→ EndOSp(r|2n)(V
⊗d) (1.3)

is surjective.

Hereby a Brauer diagram D acts on a tensor product v1 ⊗ v2 ⊗ · · · ⊗ vd as
follows: We identify the d tensor factors with the bottom points of the diagrams.
Whenever there is a cap (connecting horizontally two bottom points) we pair the
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corresponding vectors using β and obtain a scalar multiple of the vector vi1⊗· · ·⊗
vit , where t equals d minus twice the number of caps and vij = vk if the jth top
point not connected to another top point (by a cup) is connected with the kth
point at the bottom. Finally we insert for each cup a pair of new factors arising
as the image of 1 ∈ C under the counit map C 7→ V ⊗ V , see e.g. [Ser14, (3.3)] or
[ES14, Theorem 3.11] for details.

We like to stress that the map (1.3) fails to be surjective in general if we work
with G = SOSp(2m|2n) or its Lie algebra osp(2m|2n), see e.g. [LZ15] and [ES14,
Remark 5.8] as well as Remark 8.2.

Because of Proposition F, we chose to work with G = OSp(r|2n) instead of
the more commonly studied supergroup SOSp(r|2n). This requires then however
a translation and adaption of the results from the literature (including [GS10],
[GS13]) to OSp(r|2n). In case r = 2m+1 is odd this is an easy task, since we have

OSp(2m+ 1|2n) ∼= SOSp(2m+ 1|2n)× Z/2Z, (1.4)

where the generator of the cyclic group is minus the identity. If r = 2m is even,
we only have a semidirect product

OSp(2m|2n) ∼= SOSp(2m|2n) o Z/2Z, (1.5)

and the situation is rather involved. A larger part of the present paper is devoted
to this problem. We believe that, in contrast to the case of SOSp(r|2n), the blocks
for OSp(r|2n) are completely determined by their atypicality, see Remark 6.6.

Remark. Instead of considering only single tensor product spaces V ⊗d as in (1.3),
one might prefer to work with the tensor subcategory (V,⊗) of F(OSp(r|2n))
generated by V (for any fixed nonnegative integers r, n). Then the surjection (1.3)
can in fact be extended to a full monoidal functor from the Brauer category Br(δ)
to (V,⊗), see e.g. [CW12]. An object in the Brauer category (which is just a
natural number d) is sent to V ⊗d and a basis morphism (that is a Brauer diagram
as in (1.1) but not necessarily with the same number of bottom and top points)
is sent to the corresponding intertwiner. Hence the Brauer category controls all
intertwiners. Again, this statement is not true for the special orthosymplectic
groups, not even for the odd cases SOSp(2m + 1|2n), since one can find some
integer d with a non-trivial morphism from V ⊗d to V ⊗(d+1), see Remark 8.2.
Such a morphism however can not come from a morphism in the Brauer category,
since for a diagram in the Brauer category the number of dots on the top and
on the bottom of the diagram have the same parity. The Karoubi envelope of
the additive closure of the Brauer category can also be identified with Deligne’s
universal symmetric category Rep(Oδ), [Del96], as used e.g. in [CH15], [Ser14].

Using Proposition F and Lemma E, we can find an idempotent e = ed,δ in
Brd(δ) such that the following holds:

Proposition G. Let J and P ′ = ⊕λ∈JP (λ) be as in Lemma E. Then there is an
idempotent e = ed,δ in Brd(δ) together with a surjective algebra homomorphism

Φ = Φd,δ : eBrd(δ)e →→ EndF (P ′) (1.6)

identifying the primitive idempotents in both algebras. In particular every idempo-
tent in EndF (P ′) lifts.
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Comes and Heidersdorf obtain in [CH15, Theorem 7.3] a classification of the
indecomposable summands in V ⊗d in terms of idempotents of the Brauer algebra
and our (yet another) cup diagram combinatorics for the Brauer algebra developed
in [ES13]. They moreover prove in [CH15, Lemma 7.15] that the indecomposable
projective summands P (λ) correspond to cup diagrams with maximal possible num-
ber, namely min{m,n}− rk(λ), of cups. Here rk(λ) denotes the rank of λ which is
a combinatorially defined nonnegative number. Unfortunately their theorem pro-
vides no way to read off the weight λ from the cup diagram. In part II we will
show that a diagrammatic trick as in [BS12a, Lemma 8.18] for the walled Brauer
algebra can be applied in our set-up as well and provides a correspondence that
allows to read off the head of each indecomposable summand, and in particular of
the projective summand.

More precisely, let c be the cup diagram corresponding to a projective summand
in V ⊗d via [CH15, Lemma 7.15]. Let ν be the corresponding diagrammatic weight,
that is the unique diagrammatic weight ν such that c = ν, see Remark 3.13. Now
let ν† be the diagrammatic weight obtained from ν by changing all labels attached
to rays in c from ∧ into ∨ and from ∨ into ∧. Then the correspondence is given
by the following:

Proposition H. In the set-up from above we have ν† = λ∞, with λ∞ the infinite
diagrammatic weight attached to λ via (3.38).

For examples see Section 8. Note that for P ′ (as in Lemma E) Proposition H
provides a description of the idempotent e in (1.6).

The shadow of a quasi-hereditary or cellular structure. Fortunately, the
(complex) representation theory of Brd(δ) for arbitrary δ ∈ Z is by now reasonably
well understood thanks to the results in [Mar15], [CDVM09], [CDV11], [ES13],
[ES16]. In particular it is known that Brd(δ) is a quasi-hereditary algebra if δ 6= 0
and still cellular in case δ = 0, [Mar15], see also [ES13, Theorem 5.4]. For the sake
of simplicity let us assume for the next paragraph that δ 6= 0. Let Pd be the usual
labelling set of simple modules for Brd(δ) by partitions, see [Mar15], [CDV11], and
denote by Ld(α), Pd(α), and ∆d(α) the simple module, its projective cover and the
corresponding standard module respectively attached to α ∈ Pd. Standard prop-
erties for quasi-hereditary algebras, the BGG-reciprocity (see [Don98, A2.2 (iv)])
and the existence of a duality preserving the simple objects, give us that

dim HomBrd(δ)(Pd(α), Pd(β)) = [Pd(β) : L(α)]

is equal to∑
η∈Pd

[∆d(η) : L(α)](Pd(β) : ∆(η)) =
∑
η∈Pd

(Pd(α) : ∆(η))(Pd(β) : ∆(η)) (1.7)

where [M : L] denotes the multiplicity of a simple module L in a Jordan-Hölder
series of M and (P : ∆) denotes the multiplicity of ∆ appearing as a subquotient
in a standard filtration of P . As first observed in [Mar15], see also [CDV11], all the
occurring multiplicities are either 0 or 1 and given by some parabolic Kazhdan-
Lusztig polynomial (which is in fact monomial) evaluated at 1.
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Now since Brd(δ) is quasi-hereditary with standard modules ∆d(α), the idem-
potent truncation eBrd(δ)e from (1.6) is cellular, with cell modules ∆d(α)e, see
[KX98, Proposition 4.3]. Hence the endomorphism algebra in question is by Propo-
sition G a quotient of a cellular algebra. Unfortunately, we have the following:

Quotients of cellular algebras need not be cellular.

However, there is still some extra structure. Given a projective eBrd(δ)e-
module Pd(λ) with λ† ∈ J and e as in Proposition G, and a fixed filtration with
subquotients certain cell modules ∆eBrd(δ)e(ν†), then this filtration induces a fil-
tration3 of the projective module P (λ†) ∈ F via the algebra homomorphism Φd,δ.

The shape of the successive subquotients, ∆F (λ†, ν†) = ∆(λ†, ν†) does however
in general not only depend on ν†, but also on λ†, that means on the projective
module we chose. (A priori, in case of higher multiplicities, two subquotients might
even differ although they arise from isomorphic cell modules in Pd(λ). But this
turns out to be irrelevant for our counting and so we can ignore it.) It is the
multiplicities of these quotients of the cell modules which we count in our main
Theorem A. In particular we still have a well-defined positive counting formula for
the multiplicities for each given pair (λ, ν). Hence, although we do not have stan-
dard or cell modules, we still have some control about the structure of projective
objects. Moreover,

The failure of quasi-heriditarity and cellularity of the category F is encoded in
the kernel of the maps Φd,δ, from (1.6).

We need now to connect this information with Theorem A and describe the kernel.

Graded version Brgrd (δ) of the Brauer algebra Brd(δ). To determine the
number (Pd(α) : ∆d(η)) one can, as in [CDV11] or [ES13], first assign to each of
the partitions α and η a diagrammatic weight, denoted by the same letter and
compute the corresponding cup diagram α using the rules in Definition 3.10. Then
the multiplicity in question is non-zero (and therefore equal to 1) if and only if αη
is oriented in the sense of Figure 4, see [ES15, (8.64)].

Now consider the endomorphism ring

Bd(δ) := EndBrd(δ)(⊕α∈PdPd(α))

of a minimal projective generator of Brd(δ). That is Bd(δ) is the basic algebra
underlying Brd(δ). Then a basis of Bd(δ) can be labelled by pairs of oriented cup
diagrams of the form (αη, βη) or equivalently by oriented circle diagrams αηβ,
where α, η, β ∈ Pd.

By [ES15, Section 6.2], there is an algebra structure Bgr
d (δ) on the vector space

spanned by such circle diagrams using the multiplication rules of the type D Kho-
vanov algebra from [ES15]. Using the degree of circle diagrams from Figure 4, this
turns Bd(δ) into a Z-graded algebra Bgr

d (δ). It provides a new realization of the
basic Brauer algebra, namely a graded lift of the basic algebra Bd(δ):

3More generally given a finite-dimensional algebra A and a quotient algebra A/I with surjec-
tion Ψ : A → A/I, any A-module filtration of Aeλ for an idempotent eλ induces a filtration on
A/IΨ(eλ) by taking just the image.
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Theorem I. [ES16, Theorem A] The algebra Bgr
d (δ) is isomorphic to the basic

Brauer algebra Bd(δ) as ungraded algebras.

In fact this grading can also be extended to provide a grading on Brd(δ), but
for our purposes it suffices to work with the basic algebra Bd(δ).

Explicit endomorphism algebra. Given the diagrammatic description Bgr
d (δ)

of Bd(δ), the idempotent truncation eBrgr
d (δ)e (which is by definition a subalgebra)

is easily described by only allowing certain cup diagrams depending on e, in fact
precisely the λ corresponding to elements in J . However, the description of the
kernel of Φd,δ is more tricky. For (1.3) this kernel was described in [LZ14b], but
their description is not very suitable for our purposes. Instead we obtain a similar
result as in [BS12a, Theorem 8.1 and Corollary 8.2] (although the proof is quite
different), which will be explained in Part II. It implies that the kernel is controlled
by the ideal I of nuclear endomorphisms.

To summarize: For any choice of block B and set of weights J as in Lemma E
and Φd,δ as in Proposition G, we will map in Part II the circle diagrams from
Brgr

d (δ), picked out by eBrgr
d (δ)e, to the corresponding basis element of some Kho-

vanov algebra DΛ using the identification from Proposition H and the identification
from Definition 4.6 of integral highest weights with diagrammatic weights. We will
show that under this assignment the kernel of Φd,δ restricted to eBrd(δ)e is mapped
to the ideal I of nuclear circle diagrams. As a result we deduce finally Theorem B.
The construction induces a grading on each block B which we expect to be Koszul.

Acknowledgements. We are very grateful to Vera Serganova for sharing her in-
sight and pointing out a mistake in a first draft of the paper. We thank Jonathan
Comes, Kevin Coloumbier, Antonio Sartori and Wolfgang Soergel for useful dis-
cussions, and Volodymyr Mazorchuk and Michel Van den Bergh for remarks on a
first draft. We finally thank the referee for many helpful comments.

II. An illustrating example: F(SOSp(3|2))

Before we start we describe blocks of F(SOSp(3|2)) in terms of a quiver with
relations using Theorems A and B, see also Section 2.2.1 for the precise passage
to F(OSp(3|2)). In this case m = n = 1 and δ = 1. By [GS10, Lemma 7 (ii)],
all blocks are semisimple or equivalent to the principal block B (of atypicality 1)
containing the trivial representation. We therefore restrict ourselves to this block.
The explicit description of this category is not new, but was obtained already
by Germoni in [Ger00, Theorem 2.1.1]. We reproduce the result here using our
diagram algebras.

II.1. The indecomposable projectives and the algebra. By Definition 2.2,
the block B contains the simple modules Lg(λ) of (with our choice of Borel) highest
weight λ, where λ ∈ {λa | a ≥ 0} whose elements written in the standard basis are
λ0 = (0 | 0) and λa = (a | a−1) for a > 0. We abbreviate the corresponding module
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by L(a) and let P (a) be its projective cover. We assign to P (a) via Definitions 4.6
and 3.10 the cup diagram λa as shown in the second line of Figure 1 (with infinitely
many rays to the right), see also Section 8.2.

P (0) P (1) P (2) P (3) P (4) · · ·

· · · · · · · · · · · · · · · · · ·
0

2

0 3

1

2

1

2

0 1 3

2

3

2 4

3 0

4

3 5

4 · · ·

0

2

0

1

2

1

2

0 1 3

2

3

2 4

3

4

3 5

4 · · ·

Figure 1. Indecomposable projectives in 1BDΛ1B versus 1BDΛ1B/I.

The oriented circle diagrams built from the given cup diagrams are displayed
in Figure 2. They are obtained by putting one of the cup diagrams upside down
on top of another one, and then orienting the result in the sense of Figure 4.

deg = 0
∧ ∧ ∧ ∨ ∨ ···

10

∨ ∧ ∨ ∨ ∨ ···

11

∨ ∨ ∧ ∨ ∨ ···

12

∨ ∨ ∨ ∧ ∨ ···

13

deg = 1
∨ ∨ ∧ ∨ ∨ ···

f0

∨ ∧ ∨ ∨ ∨ ···

f1

∨ ∨ ∧ ∨ ∨ ···

f2

∨ ∨ ∨ ∧ ∨ ···

f3

∨ ∨ ∧ ∨ ∨ ···

g0

∨ ∧ ∨ ∨ ∨ ···

g1

∨ ∨ ∧ ∨ ∨ ···

g2

∨ ∨ ∨ ∧ ∨ ···

g3

deg = 2
∨ ∨ ∧ ∨ ∨ ···

g0 ◦ f0

∧ ∨ ∨ ∨ ∨ ···

g1 ◦ f1

∨ ∧ ∨ ∨ ∨ ···

f0◦g0=g2◦f2=f1◦g1

∨ ∨ ∧ ∨ ∨ ···

g3 ◦ f3 = f2 ◦ g2

∨ ∨ ∧ ∨ ∨ ···

f2 ◦ f0

∨ ∨ ∧ ∨ ∨ ···

g0 ◦ g2

Figure 2. The homogeneous basis vectors of 1BDΛ1B (with their degrees).
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These diagrams form the basis of the algebra 1BDΛ1B. The multiplication is
given by the rules from [ES15, Section 6.2]. The last two (framed) oriented circle
diagrams in Figure 2 are exactly those which contain at least one non-propagating
line. They span the nuclear ideal I, in 1BDΛ1B, see Proposition 5.3.

The algebra 1BDΛ1B can be equipped with a positive Z-grading, via Figure 4,
such that the basis vectors are homogeneous of degree as displayed in Figure 2
with homogeneous ideal I. It descends to a grading on 1BDΛ1B/I, and hence gives
a grading on the category B via Theorem B.

II.2. The block B in terms of a quiver with relations. From the definition of
the multiplication, see [ES15, Theorem 6.2], we directly deduce, using Theorem B,
an explicit description of the locally finite endomorphism ring Endfin

F (P ):

Theorem A. The algebra 1BDΛ1B/I is isomorphic (as a graded algebra) to the
path algebra of the following infinite quiver (with grading given by length of paths)

0
f0

��
2

g0

VV

g1ww

f2
''
3

g2

gg
f3
''
4

g3

gg
f4 ++

5 · · ·
g4

hh

1

f1

77

(2.8)

modulo the (homogeneous) ideal generated by (the homogeneous relations)

fi+1 ◦ fi = 0 = gi ◦ gi+1 , gi+1 ◦ fi+1 = fi ◦ gi for i ≥ 0

g0 ◦ f1 = 0 = g1 ◦ f0 , f0 ◦ g0 = g1 ◦ f1 = g2 ◦ f2 , f2 ◦ f0 = 0 = g0 ◦ g2.

Here, the last two relations are the relations from I. In particular, the category of
finite-dimensional modules of this algebra is equivalent to the principal block B of
F(SOSp(3|2)).

The structure of the indecomposable projective modules for 1BDΛ1B is dis-
played in the third line of Figure 1, where each number stands for the corresponding
simple module. The height where the number of a simple module occurs, indicates
the degree it is concentrated in, when we consider it as a module for the graded
algebra. We displayed the grading filtration which in this case however agrees
with the radical and the socle filtration. In comparison, the fourth line shows the
structure of the indecomposable projective modules for 1BDΛ1B/I .

The description of F(SOSp(3|2)) in Theorem A reproduces Germoni’s result,
[Ger00]. The algebra 1BDΛ1B/I in this example also occurs under the name zigzag
algebra (of type D∞) in the literature, see e.g. [CL10, 2.3]. In contrast to the
general case of F(OSp(r|2n)), it is tame representation type as shown in [Ger00].

II.3. The failure of quasi-hereditarity and cellularity. The algebra DΛ is
quasi-hereditary by [ES15, Section 6], and so 1BDΛ1B is a cellular algebra, [KX98,
Proposition 4.3]. Hence we have cell modules ∆(λ) = ∆1BDΛ1B(λ), indexed by
some labelling set (in fact certain weights λ ∈ Λ, but we ignore this here). We
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indicate in Figure 1 (by grouping the composition factors) these cell modules. Note
that there are two cell modules with simple head labelled by 1, since the truncation
of our quasi-hereditary algebra DΛ is not compatible with the quasi-hereditary
ordering. Hence although DΛ is quasi-hereditary, the truncation 1BDΛ1B is only
cellular. Factoring out the ideal I of nuclear morphisms means we kill some of the
simple composition factors. The result is displayed in the last line of Figure 1. One
can also see there for instance that the cell module ∆(2) gives rise to a different
subquotient in P (0) than in P (3), namely in the notation from Section I we have

∆(2) =
2

0 3
 ∆(0, 2) =

2
0

and ∆(3, 2) =
2
3

(2.9)

We leave it to the reader to show that this algebra 1BDΛ1B/I, is not cellular.

II.4. The 0-Calabi-Yau property. We observe that the resulting projective
modules for 1BDΛ1B/I are self-dual and they are in fact the maximal self-dual
quotients of the indecomposable projective modules for 1BDΛ1B. Hence the pro-
jective modules become injective, a property which is well-known to hold in B,
see [BKN11]. More conceptually let τ̃ : 1BDΛ1B → C be the linear (trace) map
defined on basis vectors b from Figure 2 by

τ̃(b) =

1 if b is of the form λνλ (i.e. it has reflection symmetry in
the horizontal reflection line), and deg(b) = 2,

0 otherwise,

and consider the corresponding bilinear map τ defined on basis vectors as

τ : 1BDΛ1B × 1BDΛ1B → C, τ(b1, b2) = τ̃(b1b2), (2.10)

This is by definition a symmetric form, which is however degenerate with radical
rad(τ) spanned by the nuclear morphisms f2◦f0, g0◦g2. In particular 1BDΛ1B/I =
1BDΛ1B/ rad(τ) is a noncommutative symmetric Frobenius algebra.

The block B is the maximal 0-Calabi-Yau quotient (with respect to τ) of the
category of finite-dimensional 1BDΛ1B-modules.

A corresponding characterisation holds for arbitrary blocks and arbitrary m,n and
will be studied in detail in a subsequent paper.

II.5. Koszulity. By constructing an explicit (infinite) linear projective resolu-
tions for each simple module one can check in this special example, that the algebra
1BDΛ1B/I here is a locally finite Koszul algebra in the sense of [MOS09]. Hence
Conjecture D holds in this case.

1. The orthosymplectic supergroup and its Lie algebra

For the general theory of Lie superalgebras we refer to [Mus12].

1.1. Lie superalgebras. By a (vector) superspace we always mean a finite-
dimensional Z/2Z -graded vector space V = V0⊕V1. For any homogeneous element
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v ∈ V we denote by |v| ∈ {0, 1} its parity. The integer dimV0−dimV1 is called the
supertrace of V , and the tuple sdimV = (dimV0 | dimV1) the superdimension of
V . Given a superspace V let gl(V ) be the corresponding general Lie superalgebra,
i.e. the superspace EndC(V ) of all endomorphism with the superbracket defined
on homogeneous elements by

[X,Y ] = X ◦ Y − (−1)|X|·|Y |Y ◦X. (1.11)

If V has superdimension a | b then gl(V ) is also denoted by gl(a | b). It can be
realized as the space of (a + b) × (a + b)-matrices viewed as superspace with the
matrix units on the block diagonals being even, and the other matrix units being
odd elements, and the bracket given by the supercommutator (1.11).

We fix now r, n ∈ Z≥0 and a superspace V = V0 ⊕ V1 of superdimension
r | 2n equipped with a non-degenerate supersymmetric bilinear form 〈−,−〉, i.e. a
bilinear form V × V → C which is symmetric when restricted to V0 × V0, skew-
symmetric on V1 × V1 and zero on mixed products. From now on we fix also
m ∈ Z≥0 such that r = 2m or r = 2m + 1. We denote by δ = r − 2n, the
supertrace of the natural representation.

Definition 1.1. The orthosymplectic Lie superalgebra g = osp(V ) is the Lie su-
persubalgebra of gl(V ) consisting of all endomorphisms which respect a fixed su-
persymmetric bilinear form. Explicitly, a homogeneous element X ∈ osp(V ) has
to satisfy for any homogeneous v ∈ V

〈Xv,w〉+ (−1)|X|·|v| 〈v,Xw〉 = 0. (1.12)

In case one prefers a concrete realization in terms of endomorphism of a super-
space one could choose a homogeneous basis vi, 1 ≤ i ≤ r+ 2n, of V and consider
the supersymmetric bilinear form given by the (skew)symmetric matrices

J sym =

1 0 0
0 0 1m
0 1m 0

 and J skew =

(
0 1n
−1n 0

)
where 1k denotes the respective identity matrix and r is equal to 2m+ 1 or equal
to 2m, in the latter case the first column and row of J sym are removed. Then g
can be realized as the Lie super subalgebra of matrices

(
A B
C D

)
in gl(r|2n) where

AtJ sym + J symA = BtJ sym − J skewC = DtJ skew + J skewD = 0.

The even part g0 (resp. g1) is the subset of all such matrices with B = C = 0
(resp. A = D = 0). In particular, g0

∼= so(r) ⊕ sp(2n) with its standard Cartan
h = h0 of all diagonal matrices. We denote therefore g also by osp(r|2n). Let

X = X(g) =

m⊕
i=1

Zεi ⊕
n⊕
j=1

Zδj . (1.13)

be the integral weight lattice. Here the εi’s and δj ’s are the standard basis vectors
of h∗ picking out the i-th respectively (r + j)-th diagonal matrix entry. We fix on
h∗ the standard symmetric bilinear form (εi, εj) = δi,j , (εi, δj) = 0, (δi, δj) = −δi,j
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We define the parity (an element in Z/2Z) of the
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ε’s to be 0 and the parity of the δ’s to be 1 and extend this to the whole weight
lattice as the unique map of abelian groups to Z/2Z. In the following by a weight
we always mean an integral weight. We will often denote weights as (m + n)-
tuples (a1, a2, . . . , am | b1, b2, . . . , bn), with the ε-coefficients to the left and the
δ-coefficients to the right of the vertical line.

Now g decomposes into root spaces that is into weight spaces with respect to
the adjoint action of h,

g = h⊕
⊕
α∈∆

gα.

One can check that gα is either even or odd. Hence we can talk about even roots
and odd roots. Explicitly, the roots for osp(2m|2n) respectively osp(2m+1|2n) are
the following (with 1 ≤ i ≤ r, 1 ≤ j ≤ n such that the expressions exist),

∆(2m|2n) = {±εi ± εi′ ,±δj ± δj′ | i 6= i′} ∪ {±εi ± δj}, (1.14)

∆(2m+ 1|2n) = {±εi,±εi ± εi′ ,±δj ± δj′ | i 6= i′} ∪ {±δj ,±εi ± δj},

where all signs can be chosen independently. In each case the first set contains the
even and the second the odd roots.

1.2. Supergroups and super Harish-Chandra pairs. Let G(r|2n) be the
affine algebraic supergroup OSp(r|2n) over C. Using scheme-theoretic language,
G(r|2n) can be regarded as a functor G from the category of commutative super-
algebras over C to the category of groups, mapping a commutative superalgebra
A = A0 ⊕ A1 to the group G(A) of all invertible (r + 2n) × (r + 2n) orthosym-
plectic matrices over A, see [Ser11, Section 3]. This functor is representable by an
affine super Hopf algebra (i.e. a finitely generated supercommutative super Hopf
algebra) R = C[G], and there is a contravariant equivalence of categories between
the categories of algebraic supergroups and of affine super Hopf algebras extending
the situation of algebraic groups in the obvious way, see e.g. [Fio03], [Mas13]. By
restricting the functor G to commutative algebras defines an (ordinary) algebraic
group G0 represented by R/I = C[G]/I, where I is the ideal generated by the odd
part of R. In case of G(r|2n) this algebraic group is just O(r) × Sp(2n). Simi-
larly, we also have the affine algebraic supergroup G′ = SOSp(r|2n) over C with
algebraic group SO(r) × Sp(2n). They both have osp(r|2n) as the associated Lie
superalgebra. We refer to [Ser11, Section 3] for more details on these constructions.

We are interested in the category C(r|2n) of finite-dimensional G-modules or
equivalently the category of integrable g-modules, that is Harish-Chandra modules
for the super Harish-Chandra pair (g, G, a), where a is the adjoint action, see
[Vis11]. To make this more precise we recall some facts.

Definition 1.2. A super Harish-Chandra pair is a triple (g, G0, a) where g = g0⊕g1

is a Lie superalgebra, G0 is an algebraic group with Lie algebra g0, and a is a
G0-module structure on g whose differential is the adjoint action of g0. A Harish-
Chandra module for such a triple or shorter a (g, G0, a)-module is then a g-module
M with a compatible G0-module structure (that means the derivative of the G0-
action agrees with the action of g0). We denote by (g, G0, a) −mod the category
of finite-dimensional (g, G0, a)-modules.



18 Michael Ehrig, Catharina Stroppel

Given any super Harish-Chandra pair (g, G0, a) one can construct a Hopf su-
peralgebra R = C[G] such that g is the Lie algebra of the supergroup G and
R/I = C[G0]. Namely R = HomU(g0)(U(g),C[G0]), where U(h) denotes the uni-
versal enveloping algebra of a Lie superalgebra h, and where U(g0) acts by left
invariant derivations on C[G0], see [Ser11, (3.1)] for precise formulas and the de-
scription of the Hopf algebra structure - with the dependence on the action a. This
assignment Φ : (g, G0, a) 7→ G for any super Harish-Chandra pair can be extended
in fact to the following equivalence of categories, see [Vis11], [Bal11] for the super
case, but the arguments are very much parallel to the classical case from [Kos77].

Proposition 1.3. The assignment Φ : (g, G0, a) 7→ G induces the following:

(1) The category of super Harish-Chandra pairs is equivalent to the category of
algebraic supergroups.

(2) Moreover the category of finite-dimensional (g, G0, a)-modules, denoted by
(g, G0, a)−mod, is equivalent to the category G−mod of finite-dimensional
G-modules.

The category C(G) of finite-dimensional G-modules has enough projectives and
enough injectives, [Ser11, Lemma 9.1], in fact projective and injective modules
agree, [BKN11, Proposition 2.2.2].

2. Finite-dimensional representations

We are interested in the category of Harish-Chandra modules for the particular su-
per Harish-Chandra pairs arising from the (special) orthosymplectic supergroups.
Since the action a in this cases is always the adjoint action, we will usually omit it
in the notation. From now on we fix r, n ∈ Z≥0 and use the following abbreviations:

g = osp(r|2n) G = OSp(r|2n), G′ = SOSp(r|2n),

C = C(OSp(r|2n)), C′ = C(SOSp(r|2n)).

The simple objects in C′ are (viewed as Harish-Chandra modules) highest
weight modules, and every simple object is up to isomorphism and parity shift
uniquely determined by its highest weight, see e.g. [Ser11, Theorem 9.9]. The
category C′ decomposes into a direct sum of two equivalent subcategories

C′ = F(SOSp(r|2n))⊕ πF(SOSp(r|2n)),

namely F(SOSp(r|2n)) and its parity shift πF(SOSp(r|2n)), where the category
F(SOSp(r|2n)) contains all objects such that the parity of any weight space agrees
with the parity of the corresponding weight. Similarly, the categories C decomposes
into F = F(OSp(r|2n)) and its parity shift, where F consists of those modules
that lie in F(SOSp(r|2n)) when restricted to SOSp(r|2n). Therefore it suffices to
restrict ourselves to study the summands

F ′ = F(SOSp(r|2n)) respectively F = F(OSp(r|2n)),

which we will consider now in more detail.
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2.1. Finite-dimensional representations of SOSp(r|2n). We first consider
the case of the special orthosymplectic group. With a fixed Borel subalgebra in G′,
every irreducible module in F ′ (viewed as integrable module for g) is a quotient
of a Verma module, in particular a highest weight module L(λ) for some highest
weight λ, see [Ser11, Theorem 9.9]. The occurring highest weights are precisely
the dominant weights. The explicit dominance condition on the coefficients of λ
in our chosen basis (1.13) depends on the choice of Borel we made, since in the
orthosymplectic case Borels are not always pairwise conjugate. We follow now
closely [GS13] and fix the slightly unusual choice of Borel with maximal possible
number of odd simple roots, see [GS10], with the simple roots given as follows:
For osp(2m+ 1|2n):

if m ≥ n :

{
ε1 − ε2, ε2 − ε3, . . . , εm−n − εm−n+1,

εm−n+1 − δ1, δ1 − εm−n+2, εm−n+2 − δ2, . . . , εm − δn, δn.

if m < n :

{
δ1 − δ2, δ2 − δ3, . . . , δn−m−1 − δn−m,

δn−m − ε1, ε1 − δn−m+1, δn−m+1 − ε2, . . . , εm − δn, δn.
For osp(2m|2n):

if m > n :

 ε1 − ε2, ε2 − ε3, . . . , εm−n−1 − εm−n,
εm−n − δ1, δ1 − εm−n+1, εm−n+1 − δ2, . . . , δn − εm,

δn + εm.

if m ≤ n :

 δ1 − δ2, δ2 − δ3, . . . , δn−m − δn−m+1,
δn−m+1 − ε1, ε1 − δn−m+2, δn−m+2 − ε2, . . . , δn − εm,

δn + εm.

This choice of Borel has the advantage that the dominance conditions look
similar to the ordinary ones for semisimple Lie algebras and moreover is best
adapted to our diagrammatics. To formulate it, let ρ be half of the sum of positive
even roots minus the sum of positive odd roots, explicitly given as follows.
For g = osp(2m+ 1|2n): In this case δ

2 = m− n+ 1
2 and

ρ =

{(
δ
2 − 1, δ2 − 2, . . . , 1

2 ,−
1
2 , . . . ,−

1
2

∣∣ 1
2 , . . . ,

1
2

)
if m ≥ n,(

− 1
2 , . . . ,−

1
2

∣∣− δ2 ,− δ2 − 1, . . . , 1
2 , . . . ,

1
2

)
if m < n.

For g = osp(2m|2n): In this case δ
2 = m− n and

ρ =

{(
δ
2 − 1, δ2 − 2, . . . , 1, 0, . . . , 0

∣∣ 0, . . . , 0) if m > n,(
0, . . . , 0

∣∣− δ2 ,− δ2 − 1, . . . , 1, 0, . . . , 0
)

if m ≤ n.

Remark 2.1. Note that n = 0 gives ρ = (m − 1,m − 2, . . . , 0) for m even and
ρ = (m − 1

2 ,m −
3
2 , . . . ,

1
2 ) for m odd; and ρ = (n, n − 1, . . . , 1) in case m = 0.

These are the values for ρ for the semisimple Lie algebras of type Dm, Bm, Cn.

Definition 2.2. For our choice of Borel, a weight λ ∈ X(g) is dominant if

λ+ ρ =

m∑
i=1

aiεi +

n∑
j=1

bjδj (2.15)

satisfies the following dominance condition, see [GS10].

For g = osp(2m+ 1|2n):
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(i) either a1 > a2 > · · · > am ≥ 1
2 and b1 > b2 > · · · > bn ≥ 1

2 ,

(ii) or a1 > a2 > · · · > am−l−1 > am−l = · · · = am = − 1
2 and

b1 > b2 > · · · > bn−l−1 ≥ bn−l = · · · = bn = 1
2 ,

For g = osp(2m|2n):

(i) either a1 > a2 > · · · > am−1 > |am| and b1 > b2 > · · · > bn > 0,

(ii) or a1 > a2 > · · · > am−l−1 ≥ am−l = · · · = am = 0 and
b1 > b2 > · · · > bn−l−1 > bn−l = · · · = bn = 0.

The set of dominant weights is denoted X+(g). Note that

X+(osp(2m+ 1|2n)) ⊂ (Z + 1
2 )m+n and X+(osp(2m|2n)) ⊂ Zm+n.

Definition 2.3. Assume r = 2m. If λ ∈ X+(g), written in the form (2.15),
satisfies am 6= 0, then we write λ = λ+ if am > 0, and we write λ = λ− if am < 0.

Definition 2.4. Weights satisfying (i) are called tailless and the number l + 1
from Definition 2.2 is the tail length, tail(λ), of λ.

Example 2.5. The zero weight is always dominant with maximal possible tail
length, namely tail(0) = min{m,n}.

For λ ∈ X+(g) let P g(λ) be the projective cover of Lg(λ), see [BKN11] for
a construction, and Ig(λ) its injective hull. Then the P g(λ) (respectively Ig(λ)),
with λ ∈ X+(g), form a complete non-redundant set of representatives for the
isomorphism classes of indecomposable projective (resp. injective) objects in F ′.

2.2. Finite-dimensional representations of OSp(r|2n). We recall the clas-
sification of simple finite-dimensional representations of G using the one for G′.

For this let σ ∈ Z/2Z be the non-unit element. Via (1.5) it corresponds to an
element in O(2m), also called σ, which acts by conjugation on SO(2m), as well as
g and preserving the Cartan h. On weights it acts as σ(εm) = −εm and σ(εi) = εi,
σ(δi) = δi for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n. We have O(2m) = SO(2m) ∪ σSO(2m).

To construct the irreducible representations we use a very special case of Harish-
Chandra induction which we recall now. Let (g, H, a) be a super Harish-Chandra
pair and H ′ a subgroup of H such that (g, H ′, a′ = a|H′) is also a super-Harish
Chandra pair. Then there is a (Harish-Chandra) induction functor

Indg,H
g,H′ : (g, H ′, a′)−mod −→ (g, H, a)−mod, (2.16)

where Indg,H
g,H′ N = {f : H → N | f(xh) = xf(h), h ∈ H,x ∈ H ′} is the usual

induction for algebraic groups, [Jan03, 3.3]. The H-action is given by the right

regular action and the g-action is just the g-action on N . This functor Indg,H
g,H′ is

left exact. It sends injective objects to injective objects, [Jan03, Proposition 3.9],

and it is right adjoint to the restriction functor Resg,H
′

g,H , [Jan03, Proposition 3.4].

We apply this to the two super Harish-Chandra pairs (g, G′) and (g, G).
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2.2.1. The odd case: SOSp(2m+1|2n). In this section we assume r = 2m+1
is odd. The element σ is central and thanks to (1.4) we can describe the simple
objects in F :

Proposition 2.6. For G = OSp(2m+ 1|2n) the set

X+(G) = X+(g)× Z/2Z = {(λ, ε) | λ ∈ X+(g), ε ∈ {±}}
is a labelling set for the isomorphism classes of irreducible G-modules in F . The
simple module L(λ,±) is hereby just the simple G′-module Lg(λ) extended to a
module for G by letting σ act by ±1.

Observe that Indg,G
g,G′ L

g(λ) ∼= L(λ,+)⊕L(λ,−). By construction, the category

F decomposes as F+ ⊕ F−, where F± is the full subcategory of F containing all
representations with composition factors only of the form L(λ,±), and moreover
F± ∼= F ′.

Remark 2.7. Note that the natural vector representation V = C2m+1|2n can be
identified with L(ε1,−1) in case m > n and with L(δ1,−1) in case m ≤ n. In
particular, −id ∈ G acts on a d-fold tensor product V ⊗d by (−1)d. This implies
that there is no G-equivariant morphism from V ⊗d to V ⊗d

′
in case d 6≡ d′mod 2.

Remark 2.8. In particular we have for λ, µ ∈ X+(g)

HomF (I(λ,+), I(µ,−)) = {0} = HomF (I(λ,−), I(µ,+)), (2.17)

HomF (P (λ,+), P (µ,−)) = {0} = HomF (P (λ,−), P (µ,+)), (2.18)

and the nonzero morphism spaces are controlled by those for g, more precisely

HomF (P (λ,±), P (µ,±)) = HomF ′(P
g(λ), P g(µ)). (2.19)

Corollary 2.9. Let (λ, ε) and (µ, ε′) in X+(G). Then L(λ, ε) and L(µ, ε′) are in
the same block of F if and only if ε = ε′ and Lg(λ) and Lg(µ) are in the same
block of F ′.

2.2.2. The even case: SOSp(2m|2n). Let now r = 2m be even. In this case
the situation is slightly more involved, since σ is not central. We first construct
the irreducible representations using Harish-Chandra induction.

Definition 2.10. For G = OSp(2m|2n) we introduce the following set:

X+(G) = {(λ, ε) | λ ∈ X+(g)/σ and ε ∈ Stabσ(λ)},
where Stabσ denotes the stabilizer of λ under the group generated by σ.

Notation 2.11. To avoid overloading of notation we usually just write λ instead
of (λ, ε) if the representatives of λ have trivial stabilizer. Otherwise the orbit has
a unique element. In this case the stabilizer has two elements and we often write
(λ,+) for (λ, e) and (λ,−) for (λ, σ). In addition we write λG for the σ-orbit of
λ ∈ X+(g). We will omit this superscript if the orbit consists of a single element.

Proposition 2.12. Consider g = osp(2m|2n), G = OSp(2m|2n), and G′ =
SOSp(2m|2n). Assume

λ =

m∑
i=1

aiεi +

n∑
j=1

bjδj − ρ ∈ X+(g) (2.20)
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and let Lg(λ) ∈ F ′ be the corresponding irreducible highest weight representation

of G′ with injective cover Ig(λ). Then with Indg,G
g,G′ from (2.16) the following holds:

(1) for induced irreducible representations:

(a) If am 6= 0 then the (osp(2m|2n),OSp(2m|2n))-module

L(λG) = L(λG, e) := Indg,G
g,G′ L

g(λ) (2.21)

is irreducible. Moreover,

Indg,G
g,G′ L

g(λ) ∼= Indg,G
g,G′ L

g(σ(λ)). (2.22)

(b) If am = 0 then

Indg,G
g,G′ L

g(λ) =: L(λ,+)⊕ L(λ,−) (2.23)

is a direct sum of L(λ,+), and L(λ,−), two non-isomorphic irreducible
(osp(2m|2n),OSp(2m|2n))-modules. As G′-modules they are isomor-
phic to Lg(λ).

(2) for induced injective representations:

(a) If am 6= 0 then I(λG) := Indg,G
g,G′ I

g(λ) is the indecomposable injective

hull of L(λG).

(b) If am = 0 then Indg,G
g,G′ I

g(λ) ∼= I(λ,+)⊕ I(λ,−), where I(λ,±) denotes
the injective hull of L(λ,±).

The same formulas hold for the indecomposable projective objects.

As a consequence we obtain the following:

Proposition 2.13. The {L(λ, ε) | (λ, ε) ∈ X+(G)} are a complete non-redundant
set of representatives for the isomorphism classes of irreducible G-modules in F .

Proof of Propositions 2.12 and 2.13. The arguments for (1) of Proposition 2.12
and the classification of irreducible representations in Proposition 2.13 are precisely
as in the classical case, see e.g. [GW09, 5.5.5]. By construction and the proof there,

Resg,G
′

g,G L(λ,±) ∼= Lg(λ) and Resg,G
′

g,G L(λG) ∼= Lg(λ)⊕ Lg(σ(λ)) (2.24)

where (λ,±) is as in (1)(b) respectively λ as in (1)(a). More precisely, it is proved
that the modules L(λ,±) are isomorphic to Lg(λ) as G′-modules; with the action
extended to G such that σ acts on the highest weight vector by multiplication with
the scalar 1 or −1 (but see also Lemma 2.17 and Remark 2.8).

Since the functor Indg,G
g,G′ sends injective objects to injective objects, and is right

adjoint to the restriction functor, [Jan03, Propositions 3.4 and 3.9], the statements
(2) of Proposition 2.12 can be deduced as follows. Let µ ∈ X+(g) with

µ =

m∑
i=1

a′iεi +

n∑
j=1

b′jδj − ρ. (2.25)
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If am 6= 0 in (2.20) we obtain, for any simple G-module L ∈ F , by adjunction and
the first paragraph of the proof

HomF (L, Indg,G
g,G′ I

g(λ))

∼=

{
HomF ′(L

g(µ)⊕ Lg(σ(µ)), Ig(λ)) if L = L(µG), i.e. a′m 6= 0,

HomF ′(L
g(µ), Ig(λ)) = {0} if L = L(µ,±), i.e. a′m = 0,

If am = 0, we have

HomF (L, Indg,G
g,G′ I

g(λ))

∼=

{
HomF ′(L

g(µ)⊕ Lg(σ(µ)), Ig(λ)) = {0}, if L = L(µG), i.e. a′m 6= 0,

HomF ′(L
g(µ), Ig(λ)), if L = L(µ,±), i.e. a′m = 0,

noting that in the first case the homomorphism space vanishes since Ig(λ) is the
injective hull of Lg(λ). This proves part (2) in Proposition 2.12.

To prove the analogous statements (3) for indecomposable projective modules,
recall that any indecomposable projective is also injective, [BKN11, Proposition
2.2.2]. Hence P (λG) ∼= I(Φ(λG)) and P (λ,±) ∼= I(Φ(λ,±)) for some function
Φ : X+(g) → X+(g). By [BKN11, Proposition 2.2.1], the function Φ can be
computed as follows: let N = dim g1 = 8mn and consider the 1-dimensional g0-
module

∧N
g1 of weight ν. Then there is an isomorphism of G′-modules P g(λ) ∼=

Ig(λ + ν). Set µ = λ + ν. Then, using the explicit description (1.14) of the odd
roots in osp(2m|2n), one can easily check that in ν the coefficient for εm vanishes,
and therefore am 6= 0 if and only if a′m 6= 0 in the notation of (2.20) and (2.25).
Hence, Φ preserves the condition am 6= 0. Therefore, the formulas for induced
projective modules agree with the formulas for the induced injective modules.

We have restriction formulas for the projective-injective modules as follows.

Lemma 2.14. Let λ ∈ X+(g). There are isomorphisms of G′-modules

Resg,G
′

g,G I(λG) ∼= Ig(λ)⊕ Ig(σ(λ)) if λ 6= σ(λ) and

Resg,G
′

g,G I(λ,±) ∼= Ig(λ) otherwise.

Similarly for the indecomposable projective objects.

Proof. Let P ∈ F be indecomposable projective. Then HomF (P, ) is exact. The

induction functor Indg,G
g,G′ is exact as well, due to (1.5), see [Jan03, 3.8.(3), or 4.9].

Moreover it is right adjoint to the restriction functor, thus we obtain that Resg,G
′

g,G P
is projective. The restriction formulas for projective modules follow then using
adjunction from (2.21) and (2.23). Via the identification with indecomposable
injective objects (as in the last part of the proof of Proposition 2.13), the claims
follow also for these.

Lemma 2.15. Assume λ ∈ X+(g) with am = 0 in the notation from (2.20). Then
as G′-modules I(λ,+) ∼= I(λ,−), similarly for P (λ,±).

Proof. We first claim that our Harish-Chandra induction commutes with Lie alge-
bra induction in the following sense. Let M be a finite-dimensional Harish-Chandra
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module for (g0, G
′). Then there is a natural isomorphism of Harish-Chandra mod-

ules for (g, G) as follows

U(g)⊗U(g0) (Indg0,G
g0,G′

M) ∼= Indg,G
g,G′(U(g)⊗U(g0) M).

u⊗ f 7→ fu, (2.26)

where fu(g) = u ⊗ f(g) for any g ∈ G. The map is obviously well-defined and
injective, and therefore also an isomorphism by a dimension count using that U(g)
is free over U(g0) of finite rank.

By Proposition 2.12 (2)(b) we obtain P (λ,+) ⊕ P (λ,−) ∼= Indg,G
g,G′ P

g(λ).
On the other hand, by [BKN11, Proof of Proposition 2.2.2], the indecomposable
(g, G′)-module P g(λ) is a summand of U(g)⊗U(g0) L0(λ), where L0(λ) is the irre-
ducible (g0, G

′)-Harish-Chandra module of highest weight λ.

Together with (2.26), Proposition 2.12 implies that P (λ,±) is a summand of

U(g)⊗U(g0) (Indg0,G
g0,G′

L0(λ)) ∼= U(g)⊗U(g0) (L0(λ,+)⊕ L0(λ,−))

By carefully following the highest weight vectors through the isomorphism we
obtain that P (λ,±) is in fact a summand of U(g) ⊗U(g0) L0(λ,±). By Proposi-
tion 2.12 (1)(b) the action of σ on the highest weight vector of L0(λ,+) is given
by a scalar, hence it acts by the same scalar on the highest weight vector of
U(g)⊗U(g0) L0(λ,+), and thus also on the highest weight vector of P (λ,±). The
analogous statements hold then for I(λ,±) as well (again via the identification Φ
from the proof of Proposition 2.13).

We deduce now a few dimension formulas for homomorphism spaces.

Proposition 2.16. With the notations from Proposition 2.12, in particular (2.20)
and (2.25), we have the following.

(1) Let (λ, ε), µG ∈ X+(G) with Stabσ(µ) being trivial, then

dim HomF (I(λ, ε), I(µG)) = dim HomF ′(I
g(λ), Ig(µ)) (2.27)

= dim HomF ′(I
g(λ), Ig(σ(µ)), (2.28)

dim HomF (I(µG), I(λ, ε)) = dim HomF ′(I
g(µ), Ig(λ)) (2.29)

= dim HomF ′(I
g(σ(µ)), Ig(λ)). (2.30)

(2) Let λG, µG ∈ X+(G) with Stabσ(λ) and Stabσ(µ) trivial, then

dim HomF (I(λG), I(µG)) = dim HomF ′(I
g(λ), Ig(µ)) (2.31)

= dim HomF ′(I
g(σ(λ)), Ig(σ(µ)), (2.32)

where λ and µ are chosen such that either am > 0 < a′m or am < 0 > a′m.

(3) Let (λ, ε), (µ, ε′) ∈ X+(G), then

dim HomF (I(µ,+)⊕ I(µ,−), I(µ,+)⊕ I(µ,−))

= 2 dim HomF ′(I
g(λ), Ig(µ)), (2.33)

The analogous formulas hold for indecomposable projective objects.
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Proof. For the first statement (2.27) we calculate using Proposition 2.12, adjunc-
tion of restriction and induction, and Lemma 2.14

dim HomF (I(λ,±), I(µG)) = dim HomF (I(λ,±), Indg,G
g,G′ I

g(µ))

= dim HomF ′(Resg,G
′

g,G I(λ,±), Ig(µ))

= dim HomF ′(I
g(λ), Ig(µ)).

Similarly, (2.28) holds. Again, the same formulas hold for projective objects. On
the categories F and F ′ there is the usual duality d, [Mus12, 13.7.1], given by
taking the sum of the vector space dual of the weight spaces with the action of g,
G, G′ twisted by the Chevalley automorphism. This duality sends simple objects
to simple objects and their injective hulls to the projective covers. Applying d to
(2.27) resp.(2.28) gives (2.29) and (2.30).

For the statement (2.31) we calculate

dim HomF (I(λG), I(µG)) = dim HomF (I(λG), Indg,G
g,G′ I

g(µ))

= dim HomF ′(Resg,G
′

g,G I(λG), Ig(µ))

= dim HomF ′(I
g(λ)⊕ Ig(σ(λ)), Ig(µ))

= dim HomF ′(I
g(λ), Ig(µ)),

again using Proposition 2.12, adjunction and Lemma 2.14 for the first to third
equalities. The last one follows from the Gruson-Serganova combinatorics, [GS13],
see Proposition 7.1 (1). Hence, (2.31) and similarly (2.32) follow.

The equality in the third statement follows from

dim HomF (I(λ,+)⊕ I(λ,−), I(µ,+)⊕ I(µ,−))

= dim HomF (Indg,G
g,G′ I(λ), I(µ,+)⊕ I(µ,−))

= dim HomF I(λ),Resg,G
′

g,G (I(µ,+)⊕ I(µ,−)))

= 2 dim HomF ′(I
g(λ), Ig(µ)).

where we used again Lemma 2.14, adjunction, and Proposition 2.12. The analogous
formulas for the projectives hold as well.

The following refines the last part of Proposition 2.16.

Lemma 2.17. Let G = OSp(2m|2n). In the notation from (2.20) consider the set
X+(g)sign = {λ ∈ X+(g) | am = 0}. The sign in the labelling of the irreducible
modules from (2.23) can be chosen in such a way such that for any λ, µ ∈ X+(g)sign

one of the following holds.

(1) Either dim HomF (P (λ, ε), P (µ, ε′)) is independent of ε, ε′ ∈ {+,−} and equal
to 1

2 dim HomF ′(P
g(λ), P g(µ)),

(2) or there exists ε, ε′ ∈ {+,−} such that

dim HomF (P (λ, ε), P (µ, ε′)) = dim HomF ′(P
g(λ), P g(µ)) 6= {0}, (2.34)

in which case the same holds if we change both signs ε and ε′ in (2.34),
whereas the left hand side vanishes if only one of the two is changed.
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The analogous statement holds for the indecomposable injectives as well. In both
situations the dimensions of the morphism spaces are invariant under interchanging
the two objects.

Proof. The proof of this Lemma will be given in Part II of this series. It is a
consequence of the action of the Jucys-Murphy elements of the Brauer algebra and
the classification theorem of indecomposable summands in V ⊗d from [CH15]. The
proof is an inductive argument.

2.3. The Cartan matrix. We apply the results so far to deduce the symmetry
of the Cartan matrix.

Proposition 2.18. Consider G = OSp(r|2n) for fixed m,n. The Cartan matrix
of F is symmetric, i.e. for any λ, µ ∈ X+(G) we have an equality of multiplicities
of irreducible modules in a Jordan-Hölder series

[P (λ) : L(µ)] = [P (µ) : L(λ)], (2.35)

and therefore dim HomF (P (λ), P (µ)) = dim HomF (P (µ), P (λ)).

Proof. We first claim the analogous formulas for F ′. So given λ, µ ∈ X+(g),
the multiplicity [P g(λ) : Lg(µ)] is the coefficient of the class of Lg(µ) when we
express the class of [P g(λ)] in terms of the classes of the irreducible modules
of F ′ in the Grothendieck group of F ′. Now by [GS13] we have another class
of linearly independent elements in the Grothendieck group, namely the Euler-
characteristics Eg(ν), where ν runs through all tailless elements in X+(g) and the
classes [P g(λ)] are all in the Z-lattice spanned by these, with coefficients denoted
by (P g(λ) : Eg(ν)), see [GS13, Theorem 1]. Hence

[P g(λ) : Lg(µ)] =
∑
ν

(P g(λ) : Eg(ν))[Eg(ν) : Lg(µ)]

=
∑
ν

[Eg(ν) : Lg(λ)][Eg(ν) : Lg(µ)]

= [P g(µ) : Lg(λ)],

where the second equality is the BGG-reciprocity, [GS13, Theorem 1], and the third
equality holds then by symmetry. Hence the analogue of (2.35) for F ′ holds. Now
dim HomF ′(P

g(λ), Lg(λ)) = 1, since Lg(λ) is a highest weight module, and there-
fore dim HomF ′(P

g(λ), P g(µ)) = [P g(µ) : Lg(λ)]. Hence the proposition holds for
F ′. (Alternatively one could use that P g(λ) ∼= Ig(λ) and apply the usual simple
preserving duality on F ′). Proposition 2.12 implies that dim EndF (L) = 1 for any
irreducible object in F . Then the statement from the proposition follows directly
from the statement for F ′ and the formulas for the dimensions of homomorphism
spaces (Lemma 2.17 and Proposition 2.16).

2.4. Hook partitions. Let still G = OSp(r|2n) for r = 2m + 1 or r = 2m
and recall (from Propositions 2.6 and 2.10 and (2.2)) the labelling sets X+(G)
respectively X+(g) for the isomorphism classes of irreducible objects in F and F ′.

A different commonly used labelling of the simple modules in F ′ is given by
hook partitions, see e.g. [CW12]. To make the connection, recall that a partition,
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denoted4 by pγ, is a weakly decreasing sequence of non-negative integers, pγ =
(pγ1 ≥ pγ2 ≥ · · · ). We denote by pγt its transpose partition, i.e. pγti = |{k |
λk ≥ i}|. A partition pγ is called (n,m)-hook if pγn+1 ≤ m. The partition pγ =
(8, 7, 6, 3, 3, 1) is for instance (5, 7)-hook and (5, 5)-hook, but not (2, 5)-hook, see
Figure 3. Note that the empty partition ∅ is (n,m)-hook for any n,m ≥ 0. and
corresponds to the zero weight via the following dictionary.

Definition 2.19. Given an (n,m)-hook partition pγ we associate weights

wt(pγ) ∈ X+(osp(2m+ 1|2n)), respectively wt(pγ) ∈ X+(osp(2m|2n))

defined, via (2.20), as follows, (with 1 ≤ i ≤ m, 1 ≤ j ≤ n):

• in the odd case wt(pγ) = (a1, a2, . . . , am | b1, b2, . . . , bn)− ρ, where

bj = max

{
pγj − j −

δ

2
+ 1,

1

2

}
and ai = max

{
pγti − i+

δ

2
,−1

2

}
,

• in the even case wt(pγ) = (a1, a2, . . . , am | b1, b2, . . . , bn)− ρ, where

bj = max

{
pγj − j −

δ

2
+ 1, 0

}
and ai = max

{
pγti − i+

δ

2
, 0

}
.

The ai and bj give a different way to describe (n,m)-hook partitions by encoding
the number of boxes below and to the right of the b δ2c-shifted diagonal (which
we just call diagonal). For example let λ = (8, 7, 6, 3, 3, 1). Consider it as a hook
partition, for instance as (5, 7)-hook respectively (5, 5)-hook, and mark the diagonal
(it intersects the inflexion point of the hook and the boxes on the diagonal have
content δ

2 + 1
2 respectively δ

2 + 1, where the content is the row minus the column
number of the box).

δ
2 = m− n = 2

m=7

n=5

δ
2 = 0

m=5

n=5

δ
2 = m− n+ 1

2 = 5
2

m=7

n=5

Figure 3. The translation between weights and hook partitions.

• In the even case this implies that ai counts the number of boxes in column
i strictly below the diagonal, while bj counts the number of boxes in row j
on and to the right of this diagonal. In the first two cases of Figure 3 we get
a = (7, 5, 4, 1, 0, 0, 0), respectively a = (5, 3, 2, 0, 0), and on the other hand
b = (6, 4, 2, 0, 0), respectively b = (8, 6, 4, 0, 0).

• In the odd case this implies that ai counts the number of boxes in column i
on and below the diagonal minus 1

2 . On the other hand bj counts the number

4We chose this notation to distinguish partitions from integral weights.
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of boxes in row j strictly to the right of this diagonal minus 1
2 and takes the

absolute value of this expression. In the third case above in Figure 3 this
gives a = ( 15

2 ,
11
2 ,

9
2 ,

3
2 ,

1
2 ,−

1
2 ,−

1
2 ) and b = ( 11

2 ,
7
2 ,

3
2 ,

1
2 ,

1
2 ).

(Note that we also count the numbers of boxes which can be put in the region
between the marked diagonal and the partition, i.e. above or to the left of the
diagram depending on the given diagonal.)

Definition 2.20. A signed (n,m)-hook partition is an (n,m)-hook partition pγ
with pγn+1 ≥ m or a pair (pγ, ε) of an (n,m)-hook partition with pγn+1 < m and
a sign ε ∈ {±}.

The following easy identification allows us to work with hook partitions plus
signs (in the odd case) respectively with signed hook partitions (in the even case)
instead of dominant weights.

Lemma 2.21. The assignments pγ 7→ wt(pγ) defines a bijection

Ψ = Ψ2m+1,2n : {(n,m)− hook partitions} × Z/2Z 1:1↔ X+(G) (2.36)

(pγ,±) 7→ (wt(pγ),±)

in case G = OSp(2m+ 1|2n), and, in case G = OSp(2m|2n), a bijection

Ψ = Ψ2m,2n : {(n,m)− signed hook partitions} 1:1↔ X+(G)

pγ 7→ wt(pγ)

(pγ,±) 7→ (wt(pγ),±)).

Notation 2.22. In either case: given λ ∈ X+(G), we denote by pλ the unique
hook partition such that pλ respectively (pλ,±) is the preimage of λ under Ψ and
call it the underlying hook partition.

Proof of Lemma 2.21. Take an (n,m)-hook partition pγ. To see that the maps are
well-defined it suffices to show that wt(pγ) us a dominant weight for g (since we
can clearly ignore the signs).

Let us first consider the case Ψ2m,2n. Since pγ is a partition we have ai+1 < ai
and bj+1 < bj whenever they are defined and non-zero. For the map to be well-
defined it remains to show that the number of zero a’s is equal or one larger than
the number of zero b’s.

Claim: For s ≤ min{m,n} we have am−s > 0 implies bn−s > 0. If bn−s = 0
then pγn−s −m + n − n + s + 1 ≤ 0, hence pγn−s ≤ m − s − 1 and so pγ has at
most n − s − 1 rows of length m − s. This means pγtm−s ≤ n − s − 1 and thus
am−s = pγtm−s − n+m−m+ s ≤ n− s− 1− n+ s = −1 which is a contradiction
and the claim follows. This shows that there are at least as many zero a’s as b’s.
It suffices now to show that am−r = 0 forces bn−r+1 = 0. So assume am−r = 0.
Since am−n−1 = pγtm−n−1 − n + m −m + n − 1 = pγtm−n−1 + 1 > 0 we see that
am−r = 0 implies r ≤ n and so bn−r+1 must exist. If bn−r+1 = pγn−r+1 − m +
n − n + r − 1 + 1 > 0,then pγn−r+1 > m − r which implies pγtm−r ≤ n − r + 1
and therefore am−r = pγtm−r − n+m−m+ r ≥ n− r + 1− n+ r ≥ 1 which is a
contradiction. Hence the map is well-defined and obviously injective.
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Clearly the weights in the image satisfy am ≥ 0. For the description of the
image it suffices to show that if (a |b) ∈ X+(g) satisfies the dominance condition
from Definition 2.2 with am > 0 in case (i) then it comes from a hook partition. It
is enough to see it defines a partition, since bj is only defined for 1 ≤ j ≤ n and ai
for 1 ≤ i ≤ m, hence if it is a partition it must be (n,m)-hook. For that it suffices
to see that ai 6= 0 with i = δ

2 +k for some k implies bk ≥ 1. Write i = m−s then this

is equivalent to (am−s 6= 0 implies bn−s ≥ 1), since k = i− d
2 = i−m+ n = n− s.

But this was exactly the claim above. The arguments for Ψ2m+1,2n are analogous,
but the last step is even easier here.

Definition 2.23. The tail length tail(λ) of λ ∈ X+(G) or equivalently of the
underlying hook partition, is equal to min{m,n} − d, where d is the number of
boxes on the diagonal of the hook partition.

Remark 2.24. It is easy to check that this notion agrees with the notion of tail
length from Definition 2.4. Note that tail(λ) counts the number of missing boxes
on the diagonal of the hook partition, in particular, it is maximal possible for the
empty partition, i.e. the zero weight.

We will present now a new (and more convenient) way of encoding dominant
weights and the labeling set of irreducible finite-dimensional representations of G
in terms of diagrammatic weights. This is in the spirit of [BS12b] built on the
combinatorics introduced in [ES15].

3. Diagrammatics: Generalities

We attach now a certain diagrammatic weight to each simple object in F(G).
This will allow us to develop a diagrammatic description of the morphism spaces
between indecomposable projective objects in the corresponding categories F(G).

3.1. Diagrammatic weights attached to X+(G). To establish the combina-
torics consider the non-negative number line L and call its integral points vertices.

Definition 3.1. An (infinite) diagrammatic weight or just a diagrammatic weight
λ is a diagram obtained by labelling each of the vertices by exactly one of the
symbols × (cross), ◦ (nought), ∨ (down), ∧ (up); for the position zero we do not
distinguish the labels ∧ and ∨ and use instead the label 3. The vertices labelled
◦ or × are called core symbols and the diagram obtained from λ by removing all
symbols ∧, ∨ and � is called its core diagram.

For a diagrammatic weight λ we denote by #× (λ), # ◦ (λ), # ∧ (λ), # ∨ (λ)
the number of crosses, noughts, downs and ups respectively occurring in λ.

Definition 3.2. A diagrammatic weight λ is called

• finite if # ∨ (λ) + # ∧ (λ) + #× (λ) <∞, and

• of hook partition type if # ∨ (λ) + # ◦ (λ) + #× (λ) <∞, and
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• of super type if # ∧ (λ) + # ◦ (λ) + #× (λ) <∞.

Hence a finite weight has only noughts far to the right, a weight of super type
has only ∨’s far to the right, and a weight of hook partition type has only ∧’s far
to the right. For instance, consider the diagrammatic weights

∨ ◦ × ∧ × ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨ ∧ ∨ ∧ ? ? ? ? · · · (3.37)

where the ?’s and the dots indicate either only ◦’s, only ∧’s or only ∨’s respectively.
Then the resulting three weights λfin, λhook, and λsuper are finite, hook partition
type or super type respectively.

Definition 3.3. Two diagrammatic weights λ and µ with a finite total number of
∧’s are linked or in the same block if their core diagrams coincide, and in addition,
in case there is no 3 the parity of ∧’s agree, in formulas

# ∧ (λ) ≡ # ∧ (µ) mod 2.

We now assign to each (n,m)-hook partition pγ a diagrammatic weight.

Definition 3.4. For any partition pγ and δ = r − 2n set

S(pγ) =

(
δ

2
+ i− pγi − 1

)
i≥1

. (3.38)

This is a strictly increasing sequence of half-integers (i.e. from Z + 1
2 ) if r is

odd, and of integers in case r is even. In case r is odd we identify the vertices of L
order-preserving with Z≥0 + 1

2 . That means we have then vertices 1
2 ,

3
2 ,

5
2 , . . . etc.

In case r is even, we identify the vertices of L order-preserving with Z≥0.

Definition 3.5. To the sequence S(pγ) we then assign an infinite diagrammatic
weight pγ∞ by attaching to the vertex p the label

◦ if neither p nor −p occurs in S(pγ),
∨ if −p, but not p, occurs in S(pγ),
∧ if p, but not −p, occurs in S(pγ),
× if both, −p 6= p occur in S(pγ),
3 if p = 0 occurs in S(pγ).

(3.39)

Note that there are only finitely many labels different from ∧, hence these
resulting diagrammatic weights are all of hook partition type. Moreover, the zero
position can only have labels ◦ or 3.

Example 3.6. The empty partition gives in case of odd r the following diagram-
matic weights

◦
1
2

· · · ◦

m−n

δ
2

∧ ∧ · · · ∧ ∧

2n

? ? · · · if δ > 0,

×

1
2

· · · ×

n−m

− δ2

∧ ∧ · · · ∧ ∧

2m

? ? · · · if δ < 0.

(3.40)
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(The circles around the ∧ in ? should be ignored for the moment. They will play
an important role later).

In case r is even, the empty partition gives the following diagrammatic weights

◦
0

· · · ◦

m−n

δ
2

∧ ∧ · · · ∧

2n

? · · · if δ ≥ 0,

3

0

× · · · ×

n−m

− δ2

∧ · · · ∧

2m−1

? · · · if δ < 0,

(3.41)

Again, the circle around the ∧ in ? should be ignored for the moment.

We refer to Section 8.2 for more examples.

Lemma 3.7. Let λ ∈ X+(G). We have S(pλ)i < 0 (respectively S(pλ)i ≥ 0) in
(3.38) iff the i-th row in the underlying hook partition, in the sense of Notation
2.22, ends above or on (respectively strictly below) the δ

2 -shifted diagonal.

Proof. Note that S(pλ)i < 0 iff δ
2 +i−pλi−1 < 0 or equivalently pλi > i+ δ

2−1.

The tail length of λ ∈ X+(G) can be expressed again combinatorially.

Corollary 3.8. Let λ ∈ X+(G). The tail length of λ equals tail(λ) = n− s where
s = # ∨ (λ∞) + #× (λ∞).

Proof. If m ≥ n then there is a box on the diagonal in row i iff S(pλ)i < 0. This
implies that there are exactly s boxes on the shifted diagonal, hence tail(λ) = n−s.
If on the other hand m < n then again s is the number of rows that end above or
on the shifter diagonal, but we have to subtract the first n −m rows, thus there
are s− (n−m) boxes on the diagonal, hence tail(λ) = m−s+(n−m) = n−s.

The following characterizes the weights with non-zero tail in the even case.

Corollary 3.9. Assume r = 2m and let λ ∈ X+(g) in the notation from (2.20).
Consider the underlying (n,m)-hook partition pλ and the diagrammatic weight pλ∞

given by S(pλ). Then the following are equivalent:

am > 0 ⇔ pλn+1 = m ⇔ Indg,G
g,G′ L

g(λ) is irreducible ⇔ S(pλ)n+1 = 0.

Moreover, in this case the associated diagrammatic weight pλ∞ has label 3 at
position zero, and tail(λ) = 0.

Proof. Obviously am > 0 is equivalent to pλn+1 = m by Definition 2.19, and
hence to tail(λ) = 0 by definition. It is moreover equivalent to Indg,G

g,G′ L
g(λ) being

irreducible by Proposition 2.12. On the other hand pλn+1 = m if and only if
S(pλ)n+1 = m − n + n + 1 − pλn+1 − 1 = m − pλn+1 = 0 (which then obviously
causes a 3 at position zero).
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3.2. Cup diagrams. Given a diagrammatic weight λ which is finite, of hook
partition type or of super type, we like to assign a unique cup diagram. For this
we say that two vertices in a diagrammatic weight are neighboured if they are only
separated by vertices with labels ◦’s and ×’s.

Definition 3.10. The infinite decorated cup diagram or just cup diagram λ asso-
ciated with a diagrammatic weight λ (finite, hook partition type or super type) is
obtained by applying the following steps in order.

(Cup-1) If the diagrammatic weight λ contains a 3 we change it into an ∧ or ∨ in
such a way that the resulting number of ∧’s is odd or infinite.

(Cup-2) First connect neighboured vertices labelled ∨∧ successively by a cup, i.e.
an arc forming a cup blow the labels, (ignoring already joint vertices) as
long as possible. (The result is independent of the order in which the
connections are made).

(Cup-3) Attach to each remaining ∨ a vertical ray.

(Cup-4) Connect from left to right pairs of two neighboured ∧’s by cups (viewing
3 as ∧).

(Cup-5) If a single ∧ remains, attach a vertical ray.

(Cup-6) Put a decoration • on each cup created in 4 and each ray created in 5.

(Cup-7) Finally delete all labels at vertices.

The arcs for the connections should always be drawn without intersections. More-
over two cup diagrams are considered the same if there is a bijection between the
set of arcs respecting the connected vertices.

Remark 3.11. Observe that the conditions finite, of hook partition type and of
super type make sure that the algorithm producing the cup diagram is well-defined.
In case of hook partition types the steps (Cup-3) and (Cup-5) can be removed and
the diagram will never have dotted or undotted rays, but infinitely many dotted
cups. In case the diagram is of super type it will have only rays far to the right.
In case it is of finite type it has only finitely many cups and rays.

Examples 3.12. The three diagrammatic weights λfin, λhook, and λsuper from
(3.37) provide the following three cup diagrams.

∨ ◦ × ∧ × ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨ ∧ ∨ ∧ ? ? ? ? · · ·
λfin : ◦ × × ◦ ◦ ◦ ◦ · · ·

λsuper : ◦ × × · · ·

λhook : ◦ × × · · ·

(3.42)
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The empty partition gives always an infinite cup diagram (for the diagrammatic
weight see (3.40) and (3.41)): In the case of G = OSp(2m+ 1|2n) we have

◦
1
2

· · · ◦ ◦
δ
2

· · ·
if δ > 0,

×
1
2

· · · × ×
− δ2 +1

· · ·
if δ < 0.

(3.43)

whereas in the case of G = OSp(2m|2n) we have
◦
0

· · · ◦ ◦
δ
2

· · ·
if δ ≥ 0

0

× · · · × ×
− δ2 +1

· · ·
if δ ≤ 0,

(3.44)

Remark 3.13. Note that, by construction, there might be cups nested inside each
other, but such cups cannot be dotted. By construction, there is also never a • to
the right of a ray. Given any such cup diagram c there is a unique diagrammatic
weight λ such that λ = c. Namely λ is the unique diagrammatic weight such that,
when put on top of c, the core symbols match and all cups and rays are oriented
in the unique degree zero way as displayed in Figure 4.

Definition 3.14. We call cups or rays with a decoration • dotted and those without
decorations undotted . The total number (possibly infinite) of undotted plus dotted
cups in a cup diagram c is called its defect or atypicality and denoted def(c) and
define the defect def(λ) of a diagrammatic weight to be the defect def(λ) of its
associated cup diagram. In particular def(pλ∞) =∞ for all λ ∈ X+(G).

3.3. (Nuclear) circle diagrams. A pair of compatible cup diagrams can be
combined to a circle diagram:

Definition 3.15. Given λ, µ, ν diagrammatic weights. We call the ordered pair
(λ, µ) a circle diagram if λ and µ have the same core diagrams. We usually denote
this circle diagrams by λµ and think of it as a diagram obtained from putting the
cup diagram µ upside down on top of the cup diagram λ. The upside down cups
in µ are called caps in the following.

For examples we refer to Figure 2, where the diagrammatic weight in the middle
of each circle diagram should be ignored. The connected components in a circle
diagram are (ignoring dots) either lines or circles.

We now introduce the following important set of nuclear circle diagrams

Definition 3.16. Given two diagrammatic weights λ, µ we call the circle diagram
λµ nuclear if it contains at least one line which is not propagating.

In Figure 2, the last two circle diagrams (again ignoring the diagrammatic
weight in the middle) are nuclear, the others not.
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3.4. Orientations and degree. Assume λ is a diagrammatic weight and λ its
associated decorated cup diagram. An orientation of λ is a diagrammatic weight
ν such that λ and ν have the same core diagram and if we put ν on top of λ
(identifying along the corresponding vertices), then all cups and rays in the result-
ing diagram are ‘oriented’ in one of the ways displayed in Figure 4. An oriented
infinite decorated cup diagram is such a pair (λ, ν), often denoted λν.

We usually just draw the cup diagram with the orientation on top and think
of it in a topological way.

0

∨ ∧

1

∧ ∨

0

3 ∧

1

3 ∨

0
∨ ∧

1
∧ ∨

0
3 ∧

1
3 ∨

0

∨

0

3

0
∨

0
3

0

∧ ∧

1

∨ ∨

0

3 ∧

1

3 ∨

0
∧ ∧

1
∨ ∨

0
3 ∧

1
3 ∨

0

∧

0

3

0
∧

0
3

Figure 4. Orientations (local picture) and their degrees

For instance, the cup diagram in (3.42) together with the weight from (3.42)
is an oriented cup diagram. In fact λλ is always an oriented cup diagram for any
diagrammatic weight λ. Note that λsuper in (3.42) has 26 possible orientations,
namely precisely given by those weights ν which we obtain by choosing any subset
of the cups in λsuper and changing the corresponding labels in λ from ∨ to ∧
respectively ∧ to ∨ at each cup. In general a cup diagram c has precisely 2def(c)

number of orientations.

Definition 3.17. A triple (λ, ν, µ) of diagrammatic weights is an oriented circle
diagram if λµ is a circle diagram and ν is an orientation of both λ and µ. We
usually write such a triple as λνµ and display it as the diagram λµ with some
labelling in the middle turning it into an oriented diagram in the sense that locally
every arc looks like one of the form displayed in Figure 4.

The dots should be thought of as orientation reversing points justifying the
displayed local situations in Figure 4.

We refer to Figure 2 for all possible orientations on circle diagrams obtained
from the cup diagrams in Figure 1. Obviously the following holds.

Lemma 3.18. If a circle diagram can be oriented, then there are precisely 2x

possible orientations, where x is the number of circles in the diagram.

Remark 3.19. Not every circle diagram can be oriented. As shown in [ES13,
Lemma 4.8] to be orientable one needs at least that each circle in λµ has an even
number of •’s. By [ES13, Lemma 4.8] a circle diagram which is not nuclear can be
oriented if and only if each component (circle or line) has an even number of dots.

Corollary 3.20. Assume λ, µ ∈ X+(G) and λµ is not nuclear. Then λµ is
orientable if and only if each component contains an even number of dots. Moreover
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the number of possible orientations equals 2c, where c is the number of closed
components in λµ.

Proof. This follows immediately from [ES13, Lemma 4.8], see Remark 3.19.

Definition 3.21. The degree of an oriented cup diagram λν or an oriented circle
diagram λνµ is the sum of the degrees of its components of the form as in Figure 4,
where the degree of each component is listed below each picture.

It follows from the definitions that λλ is the unique orientation of λ of degree
zero; all other orientations have positive degrees. In [ES13] we called cups or caps
of degree 0 anticlockwise and those of degree 1 clockwise. Then the degree is just
the number of clockwise cups plus clockwise caps. For examples see Figure 2.

4. Diagrammatics: OSp(r|2n)

The goal of this section is the assignment of a certain cup diagram to each ir-
reducible finite-dimensional OSp(r|2n)-module in F . This allows us to make the
connection with the Khovanov algebra DΛ and to formulate and prove the main
theorem (Theorem 5.1).

4.1. Fake cups and frozen vertices. Our infinite diagrammatic weights pλ∞

attached to λ ∈ X+(g) via (3.5) and Notation 2.22 and their cup diagrams pλ∞ are
slightly more general than those allowed in [ES13] in the sense that they might have
infinite defect. Diagrammatic weights with infinite defect were carefully avoided
however in [BS11a] and in [ES13], since the associated Khovanov algebra would
not be well-defined. Note moreover that pλ∞ only depends on λ and δ

2 , but not
on m,n itself. We will next introduce a dependence on m,n which also has the
effect of giving a certain finiteness condition which allows us to avoid working with
infinite defects. This will finally put us into the framework from [ES13] and enable
us to talk about the Khovanov algebra associated to a block of OSp(r|2n). The
defect will correspond to the usual notion of atypicality of weights in the context
of Lie superalgebras. We start by incorporating the dependence on m and n.

Definition 4.1. Given λ ∈ X+(g) with associated infinite cup diagram pλ∞, a
cup C is a fake cup if C is dotted and there are at least tail(pλ) dotted cups to the
left of C. The vertices attached to fake cups are called frozen vertices. We indicate
the frozen vertices by ?.

Remark 4.2. By definition, fake cups are never nested inside another cup, since
dotted cups are never nested. Moreover, all dotted cups to the right of a fake cup
are obviously also fake cups.

To determine the fake cups, note that Corollary 3.8 gives a formula to compute
the tail length tail(pλ). For instance, tail(∅) equals min{m,n}. For the empty par-
tition the frozen vertices are indicated in (3.40) and (3.41), where the dependence
on m and n is also illustrated; see also Section 8.2 for more examples.
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Definition 4.3. Given λ ∈ X+(g) we define the super diagrammatic weight pλ?

as the one obtained from pλ∞ by replacing all the frozen labels by ∨’s.

Example 4.4. For instance consider G = OSp(6|4), that is m = 3, n = 2. First
consider λ ∈ X+(g) with corresponding hook partition pλ = (4, 2, 1). Then

pλ∞ : 3 ◦ ∧ ∨ ∧???? · · ·  pλ? : 3 ◦ ∧ ∨ ∧ ∨ ∨ ∨ ∨ · · · (4.45)

where we indicated the relevant positions by a horizontal line. For the hook par-
tition pλ = (4, 1, 1) we obtain

pλ∞ : ◦ ∧ ∧ ∨ ∧???? · · ·  pλ? : ◦ ∧ ∧ ∨ ∧ ∨ ∨ ∨ ∨ · · · (4.46)

Example 4.5. Note that in case G = OSp(7|4), the weights λ ∈ X+(g) with hook
partitions pλ = (5, 2, 1) respectively (5, 1, 1) give rise to the same four diagrams
as in (4.45) and (4.46) above (except that 3 is replaced by ∧), but placed on the
positive half-integer line instead of the positive integer line.

4.2. Diagrammatics associated to irreducible modules. We now can assign
to each dominant weight λ ∈ X+(G) a diagrammatic weight.

Assume we are given a weight diagram λ of hook partition type. For each label
x of the form ◦ or × appearing in λ we let d(x) be the total number of ∧’s and ∨’s
to the left of x and let d(λ) =

∑
x d(x) be the sum of all these numbers.

Definition 4.6. Consider G = SOSp(r|2n). Given λ ∈ X+(G) with underlying
hook partition pλ, we define the (super) diagrammatic weight attached to λ, and
also denoted by λ, as follows

λ =


pλ? if λ = Ψ(pλ), (4.47a)

(pλ?,+) if λ = Ψ((pλ,+)), (4.47b)

(pλ?,−) if λ = Ψ((pλ,−)), (4.47c)

where we use the identifications from Lemma 2.21. Here for r even (pλ?,−) is the
same as pλ?, while (pλ?,+) is obtained from pλ? by changing the label at the first
occurring ray, in the corresponding cup diagram pλ?, from ∨ to ∧. In case r is
odd we first determine the parity of d(pλ?) plus the number of ∧’s in pλ?. In case
it is even then we apply the same rule as for odd r, in case the parity is odd, the
role of (pλ?,−) and (pλ?,+) are swapped. (Note that the parity of d(pλ?) is the
parity of the number of boxes in pλ.)

Example 4.7. As above let G = OSp(6|4). In situation (4.46) we have

pλ∞ : ◦ ∧ ∧ ∨ ∧???? · · ·  
(pλ?,+) : ◦ ∧ ∧ ∨ ∧ ∧ ∨ ∨ ∨ · · ·

(pλ?,−) : ◦ ∧ ∧ ∨ ∧ ∨ ∨ ∨ ∨ · · ·

and in situation (4.45), we obtain

pλ∞ : 3 ◦ ∧ ∨ ∧???? · · ·  
(pλ?,+) : 3 ◦ ∧ ∨ ∧ ∧ ∨ ∨ ∨ · · ·

(pλ?,−) : 3 ◦ ∧ ∨ ∧ ∨ ∨ ∨ ∨ · · ·
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Definition 4.8. The cup diagram λ attached to λ ∈ X+(G) is the cup diagram
obtained from (4.47a), (4.47b), and (4.47c) via Definition 3.10.

For explicit examples we refer to Section 8 or Figure 5.

pλ pλ? tail(pλ) def(pλ?)

2 3∧ ∧ ∨ ∧ ∧ ∧ ? · · ·

1 3∨ ∧ ∨ ∧ ∧ ∧ ? · · ·

1 2× ◦ ∨ ∧ ∧ ∧ ? · · ·

1 3∧ ∨ ∨ ∧ ∧ ∧ ? · · ·

0 3∨ ∨ ∨ ∧ ∧ ∧ ? · · ·

Figure 5. Cup diagrams pλ? associated to hook partitions in the case SOSp(7|6). With
the corresponding weights pλ? displayed above the cup diagrams.

Remark 4.9. As a result we have attached to any λ ∈ X+(G) a cup diagram
λ which has an infinite number of undotted rays, tail length many dotted cups,
and at most one dotted ray. Observe that λ coincides with pλ∞, except that each
fake cup is replaced by two vertical rays (with the leftmost ray and cup possibly
decorated differently). In other words, we keep the undotted cups, but force the
diagram to have exactly as many dotted cups as the length of the tail by taking
the first tail(λ) dotted cups. Note also that the core diagram of the diagrammatic
weight λ is the same as the core diagram of pλ∞ from Definition 3.5.

Remark 4.10. The weight diagrams attached to the pair (λ,±) can be viewed as
super analogues of the notion of associated partitions, see [FH91, § 19.5], which was
used by Weyl to label pairs of irreducible representations for O(r) which restrict
to isomorphic representations for SO(r), see Section 8.1 for more details.

Proposition 4.11. Assume r = 2m and let λ ∈ X+(g). Then there are the
following two cases:

(1) Indg,G
g,G′ L

g(λ) = L(λG) is irreducible. Then, at position zero, the attached

diagrammatic weight λG has a 3 and the cup diagram λG has a ray at position
zero. This ray is dotted if min{m,n} is even and undotted if it is odd.

(2) Indg,G
g,G′ L

g(λ) ∼= L(λ,+) ⊕ L(λ,−). Then both of the diagrammatic weights
(λ,+) and (λ,−) have a ◦ or a 3 at position zero. In case of a 3, the cup
diagrams (λ,+) and (λ,−) have a cup attached to position zero, one of them
dotted, the other undotted.
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Proof. In the situation (1) Corollary 3.9 implies that there is a 3 at position
zero and the tail is zero. Hence the dotted cup attached to the zero position in
λ∞ is fake, and thus gives a ray in λ. Depending on the parity of min{m,n}, λ
has the indicated type of leftmost ray (i.e. dotted or undotted). Now situation
(2) is equivalent to pλn+1 < m and ◦ or 3 can occur at position zero. Assume
first tail(pλ) = 0, this means pλn ≥ m. Then S(pλ)n = δ

2 + n − 1 − pλn =

m−n+n−1−pλn < 0, and S(pλ)n+1 = δ
2 +n+1−1−pλn+1 = m−n+n−pλn+1 > 0.

Since the sequence S(pλ) is strictly increasing, the value zero does not occur and
thus we have ◦ at position zero. In particular, if 3 occurs then we must have
tail(pλ) > 0, in which case the dotted cup attached to zero in pλ∞ is not fake and
so there is a dotted or undotted cup at position zero depending on the parity.

4.3. Blocks and diagrammatic linkage.

Definition 4.12. We say that two elements λ, µ ∈ X+(G) are diagrammatically
linked if their attached super diagrammatic weights λ and µ, in the sense of Defi-
nition 4.6, are in the same block, in the sense of Definition 3.3.

Lemma 4.13. Given λ ∈ X+(G) then def(λ) = n − # × (λ) with the notation
from Definition 3.14. In particular, if λ and µ give rise to the same core diagram
then def(λ) = def(µ).

Proof. Note that passing from pλ? to λ does not change the total number of cups
in the corresponding cup diagram. Now, the number of undotted cups in pλ?

equals # ∨ (λ∞), whereas the number of dotted cups is by construction equal to
tail(λ) = n− s, where s = # ∨ (λ∞) + #× (λ∞). The claim follows.

Corollary 4.14. Two diagrammatically linked elements λ, µ ∈ X+(G) have the
same defect.

Proof. Since they have by definition the same core diagram this follows directly
from Lemma 4.13.

Proposition 4.15. Let G = OSp(r|2n). Assume λ = (λ′, ε), µ = (µ′, ε′) ∈ X+(G)
for ε, ε′ ∈ {±} such that the circle diagram λµ is not nuclear.

(i) If the core diagrams of both λ and µ do not contain the zero vertex, then
λµ is not orientable for ε 6= ε′. For ε = ε′ the number of orientations is
independent of the choice of ε. If the core diagrams of both λ and µ contain
the zero vertex, we distinguish the following.

(ii) If λµ contains a line passing through the zero vertex for some choice (and
thus for all) of ε and ε′, then the number of orientations of the diagram is
independent of the choice.

(iii) If λµ contains a circle passing through the zero vertex for some choice of
ε and ε′, then either it is not orientable for any choice of ε and ε′ or it is
orientable for precisely two choices (ε, ε′) and (−ε,−ε′) and again the number
of orientations agrees for both of these choices.



Finite-dimensional representations of OSp(r|2n) 39

Proof. In case (i), λ and µ are not diagrammatically linked if ε 6= ε′. Indeed the
parities of # ∧ (λ) and # ∧ (µ) differ by construction. On the other hand, by
Figure 4, every orientation ν of λ satisfies # ∧ (ν) ≡ # ∧ (λ) mod 2. Hence any
orientation λνµ of λµ implies # ∧ (λ) ≡ # ∧ (µ) mod 2. If ε = ε′ then for a non
nuclear diagram the number of orientations agrees for both possible choices, since
the leftmost rays in λ and in µ are on the same propagating line.

Assume now that both core diagrams contain zero. In case (ii) the (propagat-
ing) line through zero contains a cup and a cap at zero, as well as the leftmost ray
in both λ and µ. Thus if is orientable, it is orientable for any choice of ε and ε′

and the number is independent by Remark 3.19.

Assume now case (iii), that means the component containing the zero vertex
is a circle. Here, the leftmost rays are contained in the same propagating line not
passing through zero. Hence if λµ is orientable, then negating both ε and ε′ also
produces an orientable diagram, while all other choices are not orientable due to
Remark 3.19.

The following is therefore only applicable in case G = OSp(2m|2n), since oth-
erwise (λ,+), and (λ,−) are in different diagrammatic blocks.

Proposition 4.16. Consider elements µ, (λ,+), (λ,−) ∈ X+(G) and the corre-
sponding diagrammatic weights, which we denote by the same notation, covering
exactly the three cases in Definition 4.6. Assume that these weights are in the same
diagrammatic block.

(1) Then µ(λ,+) is not nuclear if and only if µ(λ,−) is not nuclear.

(2) If µ(λ,+) is not nuclear, we have moreover that the number of possible ori-

entations of µ(λ,+) equals the number of possible orientations of µ(λ,−).

(3) This number of possible orientations is non-zero if and only if every compo-
nent in µ(λ,±) contains an even number of dots in which case it equals 2c

where c is the number of closed components.

Proof. The first statement is obvious, since (λ,+) differs from (λ,−) only by some
dots. To see (2), note that by Proposition 4.11, the cup diagrams (λ,+) and (λ,−)
have both a cup at the position zero, in one case dotted and in the other undotted,
whereas µ has a ray at position zero (dotted or not depending on the parity of

min{n,m}). This implies that both µ(λ,+) and µ(λ,−) have a propagating line
through zero in case they are not nuclear. By construction, this propagating line
contains cup at position zero and the (leftmost) ray in both (λ,+) and (λ,−).
Since by Definitions 4.6 and 4.8 these are exactly the two components that differ
in (λ,+) and (λ,−) by a dot, thus part (2) follows. For the third part observe
that in the non-nuclear case components are orientable precisely if and only if they
have an even number of dots, see Corollary 3.20.
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5. The main theorem, duality, and the nuclear ideal

Our main theorem gives now a description of the underlying vector space of
HomF (P (λ), P (µ)) for any λ, µ ∈ X+(G), which in particular includes an ex-
plicit counting formula for the dimension of the spaces of morphisms between two
indecomposable projective objects. In the special case G = OSp(2m + 1|2n) this
gives Theorem A from the introduction.

5.1. The main theorem. Recall the vector space I from Definition 3.16.

Theorem 5.1. Consider G = OSp(r|2n) for fixed m,n. For any λ, µ ∈ X+(G)
there is an isomorphisms of vector spaces

HomF (P (λ), P (µ)) ∼= B(λ, µ)/Iλ,µ. (5.48)

Here, B(λ, µ) is the vector space with basis all oriented circle diagrams of the form
λνµ for some diagrammatic weights ν, and Iλ,µ is the vector subspace spanned by
its set of nuclear diagrams. Hence

B(λ, µ)/Iλ,µ = 〈λνµ | λνµ ∈ B and λµ 6∈ I〉C . (5.49)

Proof. Theorem 5.1 will follow from the Dimension Formula (Theorem 7.4).

The following is a shadow of the duality explained in [MW14, 5.5]:

Corollary 5.2 (Duality). Let G = OSp(2m + 1|2n) and Gt = OSp(2n + 1|2m).
Let λ, µ ∈ X+(G) and λt, µt ∈ X+(Gt) be the corresponding element with the same
sign, but transposed partition. Then

HomF(G)(P (λ), P (µ)) ∼= HomF(Gt)(P (λt), P (µt)).

Proof. This follows directly from Theorem 5.1, since the associated diagrammatic
weight for λt is obtained from that of λ by swapping ◦ with × and × with ◦.
This swapping is however irrelevant for the dimension counting, since it does (up
to core symbols) not change the corresponding cup diagram, and also not the
possible orientations.

Before we prove Theorem 7.4, and thus Theorem 5.1, we explain how to put
an algebra structure on

⊕
λ,µ B(λ, µ)/Iλ,µ as required in Theorem B.

5.2. The algebra structure and the nuclear ideal. Let G = OSp(r|2n) and
consider a fixed block B of F . Let P = ⊕λP (λ) be a minimal projective generator,
that is the direct sum runs over all λ ∈ X+(G) such that P (λ) ∈ B. By Propo-
sitions 6.2 and 6.3 below, the corresponding set Λ(B) of diagrammatic weights is
contained in a block Λ in the sense of Definition 3.3. Let DΛ be the Khovanov
algebra of type D attached to Λ as defined in [ES15]. Let 1B =

∑
λ∈Λ(B) 1λ be the

idempotent in DΛ corresponding to Λ(B), see [ES15, Theorem 6.2]. We consider
now the algebra 1BDΛ1B. By definition it has a basis given by all oriented circle
diagrams λνµ, where λ, µ ∈ Λ(B). We first observe the following crucial fact:

Proposition 5.3. The subspace IB of 1BDΛ1B spanned by all basis vectors whose
underlying circle diagram is nuclear is an ideal.
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Proof. Let x ∈ IB be a basis vector. Hence we can find λ, µ ∈ Λ(B) such that
x ∈ B(λ, µ) ∩ IB and x contains at least one non-propagating line. It is enough
to show that cx, xc ∈ I for any basis element c of 1BDΛ1B. The algebra DΛ has
an anti-automorphism which sends a basis element aνb to b∗νa∗ in the notation
from Definition 3.17, see [ES15, Corollary 6.4]. Obviously this descends to an
anti-automorphism of 1BDΛ1B which preserve IB. Therefore, it is enough to show
bc ∈ IB.

Consider the non-propagating lines in b. Then the number of those ending at
the top equals the number of those ending at the bottom since the weights in Λ(B)
are linked and have the same defect by Corollary 4.14. Hence assume there is at
least one such line L ending at the bottom.

From the surgery procedure defining the algebra structure we see directly that
any surgery involving such a line and a circle either preserves this property ([ES15,
first two cases in Remark 5.13] and [ES15, Remark 5.15]), or produces zero ([ES15,
last two cases in Remark 5.13] and [ES15, Reconnect in 5.2.3]). Hence the claim
follows.

Now thanks to Theorem 5.1, there is a canonical isomorphism of vector spaces

Endfin
F (P ) ∼= 1BDΛ1B/IB,

sending a basis vector to the corresponding basis vector of 1BDΛ1B denoted in the
same way. In particular, Endfin

F (P ) inherits by Proposition 5.3 an algebra structure
from the Khovanov algebra DΛ via this identification. In part II of this series we
show (a more general version of Theorem B) that the two algebras are isomorphic.

6. Connection to the Gruson-Serganova combinatorics

To prove Theorem 5.1 we have to connect the diagram calculus developed in [GS13]
to our calculus. For later reference and to make a precise connection to [GS13] we
give an explicit dictionary, although we could prove the result more directly. The
GS-diagrammatic weight GS(λ) associated with λ ∈ X+(g) is a certain labelling
L with the symbols <, >, ×, ◦, ⊗ with almost all vertices labelled ◦. Gruson and
Serganova obtain this labelling as the image of a composite of two maps

GS : X+(g) −→ {GS−diagrams with tail}
−→ {coloured GS−diagrams without tail} (6.50)

We refer to [GS13] for details, but will briefly recall the construction in Section 6.3
below. (The additional signs appearing in [GS13] and in the weights for X+(g) do
not play any role for us thanks to (2.22) and therefore we can ignore them.)

For convenience we provide the explicit map T which translates from GS-
weights GS(λ) to our diagrammatic weights λ∞ = T(GS(λ)) and vice versa. The
dictionary is as follows, where the first line shows the label in GS(λ) and the second
line the corresponding label in the diagrammatic weight T(GS(λ)):

GS(λ) < > × ◦ ⊗ at 0: ⊗ > ◦
T(GS(λ)) × ◦ ∨ ∧ ∧ 3 ◦ 3

(6.51)
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Even though the vertex 1
2 will play a special role in the proofs to come, only the

vertex 0 in the even case has a special assignment rule.

6.1. Comparison of the two cup diagram combinatorics. In [GS13], Gru-
son and Serganova assigned to any GS(λ)-weight also some cup diagram (without
any decorations). We claim that our combinatorics refines their combinatorics
in the following sense (with the felicitous consequence that the assignment from
X+(G) to cup diagrams is injective):

Proposition 6.1. Let λ ∈ X+(g) with associated hook diagram pλ.

(1) The assignment T, from (6.51) satisfies

T(GS(λ)) = pλ∞. (6.52)

(2) Moreover, the cup diagram attached to GS(λ) in the sense of [GS13] agrees
with our cup diagram pλ∞ when forgetting the decorations and fake cups, and
with pλ? when forgetting the decoration and all rays.

(3) Under this correspondence the cups attached to ⊗’s correspond precisely to
the dotted, non-fake cups in pλ∞, and to the dotted cups in pλ?.

Proof. It suffices to prove the statements involving pλ∞, since the others follow
then directly from the definition of pλ?. The proof is given in Section 6.4.

6.2. Blocks in terms of diagrammatic blocks. Before we prove Proposi-
tion 6.1, we deduce some important consequence:

Proposition 6.2. Assume that G = OSp(r|2n) with r odd. Let λ, µ ∈ X+(G).
Then P (λ) and P (µ) (and hence then also L(λ) and L(µ)) are in the same block if
and only if pλ∞ and pµ∞ have the same core diagrams in the sense of Definition 3.1
and additionally # ∧ (pλ?) ≡ # ∧ (pµ?) mod 2.

Proof. Observe that the assignment T identifies core symbols in the sense of [GS13]
with core symbols in the sense of Definition 3.1.

By Definition 2.6 we have λ = (λ′, ε) and µ = (µ′, ε′) for some λ′, µ′ ∈ X+(g)
and ε, ε′ ∈ {±}. Now by Corollary 2.9, P (λ) and P (µ) are in the same block if
and only if ε = ε′ (that means σ acts by the same scalar) and additionally P g(λ′)
and P g(µ′) are in the same block for F ′. By [GS13], the latter holds precisely if
the associated weight diagrams GS(λ′) and GS(µ′) have the same core diagram
in the sense of [GS13], and hence by Proposition 6.1 pλ∞ and pµ∞ have the same
core diagrams in the sense of Definition 3.1. Therefore P (λ) and P (µ) are in
the same block if and only if pλ∞ and pλ∞ have the same core diagrams and
#∧ (pλ?) ≡ #∧ (pµ?) mod 2, since this parity is given by ε, by Definition 4.6.

Proposition 6.3. Assume that G = OSp(r|2n) with r even. Let λ, µ ∈ X+(G).
Then P (λ) and P (µ) (and hence also L(λ) and L(µ)) are in the same block if and
only if pλ∞ and pµ∞ have the same core diagrams, see Definition 3.1, as well as
# ∧ (pλ?) ≡ # ∧ (pµ?) mod 2 in case no 3 occurs.
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Remark 6.4. In particular P (λ) and P (µ) are in the same block if and only if
pλ? and pµ? are diagrammatically linked in the sense of Definition 4.12.

Proof. Assume HomF (P (λ), P (µ)) 6= {0} then

HomF ′(Resg,G
′

g,G P (λ),Resg,G
′

g,G P (µ)) 6= {0}.

By Lemma 2.14 Resg,G
′

g,G P (λ) and Resg,G
′

g,G P (µ) give rise to weight diagrams in the
sense of [GS13] which have the some core diagrams, [GS10, Lemma 7], hence pλ∞

and pµ∞ have the same core diagrams thanks to Proposition 6.1. Note that in case
the restricted module contains more than one summand, the two summands give
rise to the same core diagram.

In case that both λ and µ do not contain a 3 in their respective weight diagrams,
it follows from Proposition 4.11 that the weights are of the form (λ′, ελ) and (µ′, εµ)
for some λ′, µ′ ∈ X+(g) and signs ελ and εµ. Furthermore one is in case (1) of
Lemma 2.17 and thus ελ = εµ, which by Definition 4.6 implies that # ∧ (pλ?) ≡
# ∧ (pµ?) mod 2. This shows the ”only if” direction of the claim.

For the ”if” direction of the claim assume that both equality of core diagrams
as well as the parity condition are fulfilled.

In case the core diagram contains a symbol at position zero, necessarily a ◦, it
holds by case (1) of Lemma 2.17 that

HomF (P (ν, ε)), P (η, ε′)) 6= {0} ⇐⇒ HomF ′(P
g(ν)), P g(η)) 6= {0} and ε = ε′,

for ν, η ∈ X+(g) with the same core diagram as λ and µ. Therefore the claim
follows from [GS13], since the sets of weights with a fixed sign give rise to a block.

Assume now that the core diagram does not contain a symbol at zero, i.e.
λ and µ both have 3 at position zero in their respective diagrammatic weights.
Write λ = (λ′, ε) and µ = (µ′, ε′) for λ′, µ′ ∈ X+(g) and ε, ε′ elements in the
respective stabilisers. Since the core diagrams are the same, P g(λ′) and P g(µ′)
are in the same block by [GS10, Lemma 7] and hence are connected by a sequence
of homomorphisms between projective modules. By Proposition 2.16 this can be
lifted to a sequence of morphisms between the modules P (λ′, ι) and P (µ′, ι′). Here
ι and ι′ can differ from ε and ε′. In case any of them do have a sign, one notes that
there is a module P (ν) with the same core diagram such that ν does not have a
sign (this can be λ or µ). By Proposition 2.16 and Lemma 2.17 all the occurring
modules P (λ′, ε), P (λ′, ι), P (µ′, ε′), and P (µ′, ι′) can be connected to P (ν) by a
sequence of morphisms and hence all of them are in the same block. The claim
follows.

Corollary 6.5. Let λ, µ ∈ X+(G). If P (λ) and P (µ) are in the same block B of
F then def(λ) = def(µ). In particular, one can talk about the defect def(B) of a
block B of F .

Proof. This follows directly from Propositions 6.2 and 6.3, and Corollary 4.14.

Remark 6.6. Using the dictionary to [GS13] which we have developed in (6.51),
one can show that the defect is precisely the atypicality of the block in the sense
of Lie superalgebras. We expect that, in contrast to the SOSp-case treated in
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[GS10, Theorem 2], the blocks depend up to equivalence of categories only on the
atypicality, see Section 8 for examples.

To prove Proposition 6.1 we recall some of the constructions from [GS13].

6.3. The Gruson-Serganova combinatorics. We start by recalling the con-
struction of the map GS from [GS13]. Recall the notion of vertices on L as in
Section 3.1. The first map in (6.50) takes a weight η ∈ X+(g) writes η + ρ in the
form (2.15) and puts at the vertex p of L then αp symbols > and βp symbols <,
where

αp = |{1 ≤ j ≤ m | aj = ±p}| and βp = |{1 ≤ i ≤ n | bi = ±p}|

and a symbol ◦ if αp = βp = 0. We use the abbreviation × for a pair > and < at
a common vertex. We call the resulting diagram a GS-diagram with tail.

Case: osp(2m + 1|2n): In this case the dominance condition is equivalent to
the statement that there is at most one symbol, >, <, × or ◦ at each vertex p > 1

2
and at 1

2 at most one < or >, but possibly many ×. If there are only ×’s at 1
2 we

have to put an indicator which is (+) if aj = 1
2 for some j and (−) otherwise. For

instance, the diagram for the trivial weight are the following for n > m, m = n,
m > n respectively.

×
...
×
×
> > ··· > > ◦ ◦ ···

m−n

n

×
×
...
×
×(−) ◦ ◦ ◦ ···

n

×
...
×
×
< < ··· < < ◦ ◦ ···

n−m

m

(6.53)

The tail length is the number of × at the leftmost vertex, subtracting one if the
indicator is (+), and similarly the tail are all symbols × at position 1

2 except for
one if the indicator is (+).

Case: osp(2m|2n): The dominance condition in this case is equivalent to the
statement that there is at most one symbol, >, <, × or ◦ at each vertex p > 0 and
at 0 either ◦ or at most one > but possibly many ×. If there is a ◦ at 0 one has
to remember a sign to distinguish am > 0 and am < 0 (denoted by [±] in [GS13]).
The trivial weight corresponds to the following (for m > n, n ≥ m respectively).

×
...
×
×
> > ··· > > ◦ ◦ ···

m−n

n

×
×
...
×
× < < ··· < < ◦ ◦ ···

n−m

m (6.54)

The tail length is the number of × at the leftmost vertex.
For the second map (6.50) we have to turn the diagram with tail into a coloured

weight diagram. In case of osp(2m+1|2n) proceed as follows: First remove the tail
of the diagram, but remember the number l = tail(η), of symbols removed (note
that in case of an indicator this can mean that one symbol × at position 1

2 is kept).
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Ignoring the core symbols < and >, connect neighboured pairs × ◦ (in this order)
successively by a cup. Then number the vertices not connected to a cup and not
containing < or > from the left by 1, 2, 3, . . .. Then relabel those positions with
number 1, 3, 5, . . . , 2l − 1 etc. by ⊗. (The symbol ⊗ indicates that at least apart
from the special case of the leftmost vertex a × was actually moved and placed on
top of a ◦). Finally connect neighboured pairs ⊗ and ◦ successively by a cup.

The resulting diagram with all labels at cups removed is the GS-cup diagram
attached to η. In [GS13] these new labels ⊗ are called coloured and we call the
attached cups coloured; note they are by construction never nested inside other
cups. The resulting labelling of L (after all cups are removed) is the coloured
GS-diagram without tail attached to η.

In case of osp(2m + 1|2n) proceed in the same way but viewing the vertex 0
as the vertex 1

2 and always using the rule that if there are only × at position zero
the indicator is (+). Note that whether am is strictly larger or smaller than 0 does
not play a role in the construction of the diagram.

Lemma 6.7. With the assignment T, from (6.51), we have T(GS(0)) = p0∞, and
Proposition 6.1 holds for η = 0.

Proof. . Case osp(2m+1|2n): The weights from the diagrams (6.53) with tail are
transferred into the cup diagram with m, respectively n in the last case, coloured
cups placed next to each other starting at position − δ2 +1, 0, and δ

2 respectively. On
the other hand, our diagrammatics assigns to the empty partition the diagrammatic
weights (3.40) and hence produce a cup diagrams with n, respectively m in the last
case, dotted cups placed next to each other starting at position − δ2 + 1, 0 and δ

2
respectively, see (3.43). The corresponding coloured weight diagram contains the
>’s and <’s at the correct positions and only ◦ and ⊗ at the positions of the cups.
Applying T this translates into the diagrammatic weights (3.40). Hence the claim
is true in case osp(2m+ 1|2n).

. Case osp(2m|2n): In this case the diagrams (6.54) with tail are transformed into
a cup diagram with n, respectively m− 1 in the second case, coloured cups placed
next to each other starting at positions δ

2 , respectively − δ2 +2. In the latter case it

also contains one uncoloured cup connecting position zero and − δ2 + 1. Using our
diagrammatics will produce the weight diagrams in (3.41), which in turn produce
cup diagrams with n, respectively m − 1 dotted cups placed next to each other
starting at positions δ

2 , respectively − δ2 + 2, see (3.44).

6.4. The proof of Proposition 6.1. The proof proceeds by induction on the
number of boxes in the corresponding hook partition (where we are allowed to
ignore the sign).

Proof of Proposition 6.1. In case of the empty partition the claim follows from
Lemma 6.7 above.

Adding a box: We assume that the hook partition pλ for λ is obtained from a hook
partition pµ, for some µ, by adding a box. Then for pµ the following holds
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• If bi > 0 and we can add a box in row i, then bj > bi + 1 for all j < i. This
implies that in the GS weight there is no symbol < or × at positions bi + 1,
i.e. immediately to the right of bi.

• If ai > 0 and we can add a box in column i, then aj > ai + 1 for all j < i.
This implies that in the GS weight there is no symbol > or × at positions
ai + 1.

• There can be a symbol ⊗ at the position ai + 1 respectively bi + 1.

Assume first that the box is added far away, which means not on or directly
next to the diagonal. In these cases we need not distinguish between odd and even.

The additional box is added far above the diagonal. We add the box in
position (j0, i0) above the diagonal, but not directly above the diagonal. In both
the even and odd case bj0 >

1
2 , and it will be increased by 1 whereas all other a’s

and b’s are preserved. This means a symbol < is moved to the right from position
bj0 to bj0 + 1. Note that if the symbol < is part of a × there cannot be a symbol
⊗ at position bj0 + 1 by construction of the coloured GS-diagram.

Hence we are in exactly one of the situations listed in the row (6.55) in the table
below where the symbols not in brackets are placed at positions bj0 and bj0 + 1.
Applying T to (6.55) gives (6.56).

µ

λ

< ◦

◦ <

< > (◦)

◦ × (◦)

< > (⊗ ◦)

⊗ × (◦ ◦)

< ⊗ (◦)

⊗ < (◦)

× ◦

> <

× > (◦)

> × (◦)
(6.55)

µ

λ

× ∧

∧ ×

× ◦ (∧)

∧ ∨ (∧)

× ◦ (∧ ∧)

∧ ∨ (∧ ∧)

× ∧ (∧)

∧ × (∧)

∨ ∧

◦ ×

∨ ◦ (∧)

◦ ∨ (∧)
(6.56)

On the other hand, since bj0 > 0 with bj0 = µj0 − j0− δ
2 + 1 we have S(pµ)j0 =

−bj0 . By assumption this will be decreased by 1 when passing to pλ. Hence we
have either the symbol ∨ or × at position bj0 and the symbol ∨ gets moved to the
right. Furthermore S(pµ)j < S(pµ)j0 − 1, since µj > µj0 for j < j0, which in turn
implies that at position bj0 + 1 there is the symbol ∧ or ◦.

In all of the listed cases neither the tail length nor the number of dotted cups is
changed, thus all fake cups are unchanged, and if an ∧ in pµ∞ is frozen and moved,
it is still frozen in pλ∞. Hence the claim follows in this case.

The box is added far below the diagonal. We add the box in position (j0, i0)
below the diagonal and not adjacent to the diagonal. In this case ai0 > 1

2 . It
will be increased by one whereas all other ai’s and bi’s are left unchanged. Thus
we move a symbol > to the right. As before, there cannot be the symbol ⊗ at
position ai0 + 1 if there is the symbol × at position ai0 . In total this gives us the
configurations in the first row (6.57) below (showing the positions ai0 and ai0 + 1
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without brackets). The second row (6.58) shows then the image under T.

µ

λ

> ◦

◦ >

> < (◦)

◦ × (◦)

> < (⊗ ◦)

⊗ × (◦ ◦)

> ⊗ (◦)

⊗ > (◦)

× ◦

< >

× < (◦)

< × (◦)
(6.57)

µ

λ

◦ ∧

∧ ◦

◦ × (∧)

∧ ∨ (∧)

◦ × (∧ ∧)

∧ ∨ (∧ ∧)

◦ ∧ (∧)

∧ ◦ (∧)

∨ ∧

× ◦

∨ × (∧)

× ∨ (∧)
(6.58)

On the other hand, note that since ai0 > 0 we have ai0 = µti0−i0+ δ
2 = j0−1−i0+ δ

2 .

This implies S(pµ)j0 = δ
2 +j0−µi0−1 = ai0 +1 > 0. Adding the box will decreased

this by 1 (since µi0 is increased by 1). Thus we have the symbol ∧ or × at position
ai0 + 1 with ∧ moved to the left. Furthermore S(pµ)j < S(pµ)j0 − 1 since µj > µj0
for j < j0, which in turn implies that at position ai0 there is either the symbol
∨ or ◦. Again, in all cases neither the tail length nor the number of dotted cups
changes, thus all fake cups are unchanged. Additionally if an ∧ in pµ∞ is frozen
and moved in pλ∞ it will be frozen in pλ∞ as well.

For the remaining cases we have to distinguish between r being odd or even.

. Case osp(2m+1|2n): We distinguish three possibilities: adding the box exactly
above the shifted diagonal, adding the box exactly below the shifted diagonal, and
adding the box on the diagonal.

The additional box is added directly above the diagonal. We add the box
in position (j0, i0) directly above the diagonal. Thus, i0 − j0 = δ

2 + 1
2 . In addition

bj0 = 1
2 and it will be increased by 1, while all other a’s and b’s are left unchanged.

Thus a symbol > is moved from position 1
2 to position 3

2 . If this symbol is not
part of a symbol × then the arguments are the same as for adding a box far above
the diagonal and we refer to that case. If on the other hand it is part of a × this
implies that the indicator is (+) since ai0−1 = 1

2 . Thus the × at position 1
2 is not

coloured and then the two possible situations are displayed in (6.59) on the left
and image under T is displayed on the right.

µ

λ

× ◦

< >

× < (◦)

< × (◦)

µ

λ

∨ ∧

◦ ×

∨ ◦ (∧)

◦ ∨ (∧)
(6.59)

On the other hand note that S(pµ)j0 = − 1
2 which will be decreased to − 3

2 by
adding the box. Again neither tail length nor number of dotted cups changes. The
claim follows in this case.

The additional box is added directly below the diagonal. We add the box
in position (j0, i0) directly below the diagonal, thus i0 − j0 = δ

2 −
3
2 . In addition

ai0 = 1
2 and it will be increased by 1, while all other a’s and b’s are left unchanged.

Thus a symbol < is moved from position 1
2 to position 3

2 . If this symbol is not
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part of a symbol × then the arguments are the same as for adding a box far below
the diagonal and we refer to that case. As in that case the indicator is (+), since
ai0 = 1

2 , and we obtain the two possibilities displayed on the left below:

µ

λ

× ◦

> <

× > (◦)

> × (◦)

µ

λ

∨ ∧

× ◦

∨ × (∧)

× ∨ (∧)

Applying T givves the weight diagrams displayed on the right. On the other hand,
note that S(pµ)j0 = 3

2 which will be decreased to 1
2 . The rest of the argument is

the same as before.

The additional box is added on the diagonal. We add the box in position
(j0, i0) on the diagonal. Thus i0 − j0 = δ

2 −
1
2 . In addition ai0 = − 1

2 which will
be increased by 1, while all other a’s and b’s are left unchanged. The 1

2 position
for µ contains only the symbol × and the indicator is (−) since ai0 = − 1

2 . Thus
in the GS-combinatorics adding the box on the diagonal does not change the di-
agrammatic weight itself but the indicator from (−) to (+). Which decreases the
tail length by 1. On the other hand in this case S(pµ)j0 = 1

2 . It will be decreased
to − 1

2 and thus the first cup gets changed from a dotted cup to an undotted cup
(while preserving all frozen variables).

. Case osp(2m|2n): Again we distinguish three scenarios as above.

The additional box is added directly above the diagonal. We add the box
in position (j0, i0) directly above the diagonal. Thus, i0 − j0 = δ

2 + 1. In addition
bj0 = 1 and it will be increased by 1, while all other a’s and b’s are left unchanged.
Then we can argue as in the case of adding a box far above the diagonal.

The additional box is added directly below the diagonal. We add the box
in position (j0, i0) directly below the diagonal. Thus, i0 − j0 = δ

2 − 1. In addition
ai0 = 0 and it will be increased by 1, while all other a’s and b’s are left unchanged.

Note that bj0−1 > 0. Furthermore the rest of the diagonal to the lower right is
empty, implying ai = 0 for i > i0 and bj = 0 for j > j0 − 1, which implies that
in the tail we have exactly once the symbol > and possibly some ×. The × are
distributed to obtain the coloured diagram, leaving > at position zero. This leads
to the following configurations (at positions zero and 1, the rest is unchanged)
displayed in (6.60) with the image under T displayed in (6.61):

µ

λ

> ◦

◦ >

> < (◦)

◦ × (◦)

> < (⊗ ◦)

⊗ × (◦ ◦)

> ⊗ (◦)

⊗ > (◦)
(6.60)

µ

λ

◦ ∧

3 ◦

◦ × (∧)

3 ∨ (∧)

◦ × (∧ ∧)

3 ∨ (∧ ∧)

◦ ∧ (∧)

3 ◦ (∧)
(6.61)
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On the other hand S(pµ)j0 = 1 which implies that at position 1 there is either
an ∧ or a ×. In addition, since µj > µj0 for j < j0 it holds that S(pµ)j ≤ −1 for
j < j0 (the case = −1 giving us the symbol × at position 1) and since µj ≤ µj0
for j > j0 it holds S(pµ)j ≥ 2 for j > j0. Again, neither tail length nor number of
dotted cups changes.

The additional box is added on the diagonal. We add the box in position
(j0, i0) on the diagonal and thus i0 − j0 = δ

2 . In addition bj0 = 0 which will be
increased by 1, while all other a’s and b’s are left unchanged. It holds ai0 = 0 as
well as ai = 0 for i > i0 and bj = 0 for j > j0. This means that the diagram
with a tail has only the symbol × at position zero (possibly multiple times), with
all but one being distributed when forming the coloured diagram. Since we add
a box on the diagonal all bj > 1 for j < j0, and all ai ≥ 1 for i < i0. This
implies that we have the symbol ◦ or > at position 1, giving us the following
configurations displayed on the left (showing positions zero and 1) with the image
under T displayed on the right hand side.

µ

λ

⊗ ◦

> <

⊗ > (◦)

> × (◦)

µ

λ

3 ∧

◦ ×

3 ◦ (∧)

◦ ∨ (∧)

On the other hand, µj0 = j0 + δ
2 − 1, thus S(pµ)j0 = 0, which gets decreased by 1.

Furthermore S(pµ)j < −1 for j < j0 since µj > µj0 for j < j0 and S(pµ)j ≥ 1 for
j > j0. This gives the symbol 3 at position zero and either ∧ or ◦ at position 1.

The tail length decreases by 1, but we also loose the decoration on the first dot-
ted cup from the left or the dotted cup altogether; all fake cups and corresponding
frozen vertices remain unchanged. Since the cup diagrams agree, their leftmost
label determines whether they are coloured (in the sense of [GS13]) or dotted in
our sense, hence the statement follows from (6.51). The proposition follows.

Definition 6.8. Assume η ∈ X+(g). Let D be the GS-cup diagram associated
with η. Then a consistent labelling of D is a labelling of the vertices with >, <,
×, ◦ such that the core symbols match with the core symbols of GS(η) and each
cup is labelled by precisely one × and one ◦. For a tailless weight ν ∈ X+(g)
let A(η, ν) = 1 if GS(ν) is a consistent labelling of D and A(η, ν) = 0 otherwise.
In case of a consistent labelling, let x(η, ν) be the number of coloured cups, and
y(η, ν) the number of coloured cups labelled ◦ and × in this order. Set z(η, ν) = 1
if there exists a cup with left vertex at position zero labelled with × via ν in the
even case, respectively a cups with left vertex at position 1

2 labelled with × via ν
in the odd case and indicator (+) and let z(η, ν) = 0 otherwise.

7. Counting formulas

We present now several dimension formulas for homomorphism spaces.
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7.1. Dimensions of morphism spaces: alternating formula. We commence
with the following dimension formula deduced from the results of Gruson and
Serganova, see [GS13, Theorems 1 to 4]5.

Proposition 7.1. Let λ, µ ∈ X+(g).

(1) If r = 2m and am > 0 > a′m or am < 0 < a′m, as in (2.20), (2.25), then

HomF ′(P
g(λ), P g(µ)) = {0},

(2) otherwise

dim HomF ′(P
g(λ), P g(µ)) =

∑
a(λ, ν)a(µ, ν) (7.62)

where the sum runs through all tailless dominant weights ν and

a(η, ν) = (−1)x(η,ν)+y(η,ν)+z(η,ν)A(η, ν) (7.63)

for any η ∈ X+(g).

Remark 7.2. Note that a(η, ν) ∈ {−1, 0, 1}. In particular, the numbers are not
always non-negative, and the above sum might have some (non-trivial) cancel-
lations. In the framework of Gruson and Serganova, the a(η, ν) are coefficients
expressing the so-called Euler classes Eg(ν) in terms of simple modules, i.e. we
have in the Grothendieck group [Eg(ν)] =

∑
λ a(λ, ν)[Lg(λ)].

Proof. We have dim HomF ′(P
g(λ), P g(µ)) = [P g(µ) : Lg(λ)], where [− : −] de-

notes the Jordan-Hölder multiplicity of Lg(λ) in P g(µ) or alternatively the coef-
ficient of the class [Lg(λ)] in the Grothendieck group when the class [P g(λ)] is
expressed in the classes of the simple modules. On the other hand, the classes
[Eg(ν)] of the Euler characteristics (for tailless dominant ν) are linearly indepen-
dent in the Grothendieck group and

[P g(λ)] =
∑
ν

a(λ, ν)[Eg(ν)] and [Eg(ν)] =
∑
µ

a(µ, ν)[Lg(µ)]

by [GS13, Lemma 3, Theorem 1], so (7.62) holds. Formula (7.63) is just a concise
reformulation of [GS13, Theorem 2, Theorem 3, Theorem 4].

7.2. Dimensions of morphism spaces: positive formula. We first show that
the cancellations addressed in Remark 7.2 appear precisely if the corresponding
space of homomorphisms vanishes completely. This allows us to get the following
explicit dimension formula.

Proposition 7.3. Let λ, µ ∈ X+(g) with am ≥ 0 and a′m ≥ 0 in the notation from
(2.20) respectively (2.25), and let pλ, pµ be the corresponding hook partitions. Then
there exist ε ∈ Stabσ(λ) and ε′ ∈ Stabσ(µ) such that the following are equivalent

(I) HomF ′(P
g(λ), P g(µ)) 6= 0,

(II) the circle diagram C = (pλ?, ε)(pµ?, ε′) is not nuclear and every component
has an even number of dots.

5It might help to say that the first condition is only implicitly contained in [GS13].
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If (I) and (II) are satisfied, then the following holds

(1) a(λ, ν)a(µ, ν) ∈ {0, 1} for any tailless ν ∈ X+(g),

(2) dim HomF ′(P
g(λ), P g(µ)) = 2c+c

′
, where c is the number of closed compo-

nents of c. In case am = 0 = a′m, or equivalently if the zero vertex in C is
contained in a cup and a cap, then c′ = 1, otherwise c′ = 0.

Proof. For (I)⇒ (II) it is enough to show that HomF ′(P
g(λ), P g(µ)) 6= 0 implies

we have no non-propagating line and that each closed component has an even
number of dots, since then only the leftmost line is allowed to carry dots and we
can choose ε and ε′ such that by definition of (pλ?, ε) and (pµ?, ε′) the total number
of dots is even. By (7.62) we have dim HomF ′(P

g(λ), P g(µ)) =
∑
ν a(λ, ν)a(µ, ν)

and a(λ, ν) is non-zero if putting the GS-weight GS(ν) on top of the cup diagram
D associated with GS(λ) results in a picture where the labels > and < in λ and
ν agree and each cup has the two symbols ◦, × in any order at its two endpoints.
Clearly a(λ, ν) = 0 if there is a non-propagating line, since the line must have ◦’s
at the end, but has an odd total number of cups and caps.

If a(λ, ν) 6= 0, then a(λ, ν) = (−1)x+z+y, where x = x(λ, ν) , y = y(λ, ν),
and z = z(λ, ν). In particular, x does not depend on ν. Let K be a closed
component of the circle diagram C. If a(λ, ν)a(µ, ν) 6= 0 then we can find a weight
ν′ such that GS(ν′) agrees with GS(ν) at all vertices not contained in K, but the
symbols × and ◦ swapped for the vertices contained in K. Assume now that K
has an odd total number of dots. If K does not contain the vertex 1

2 or zero then

(−1)y(λ,ν)+y(µ,ν) = −(−1)y(λ,ν′)+y(µ,ν′), hence a(λ, ν)a(µ, ν) = −a(λ, ν′)a(µ, ν′)
and so the two contributions cancel.

The same holds if K does contain the the vertex 1
2 but with the same indicator

(+) or (−) in λ and µ. If it contains the vertex 1
2 and the indicators differ then

we have an even number of coloured cups and caps in K, hence

(−1)y(λ,ν)+y(µ,ν) = (−1)y(λ,ν′)+y(µ,ν′) and

(−1)z(λ,ν)+z(µ,ν) = −(−1)z(λ,ν
′)+z(µ,ν′)

implying again a(λ, ν)a(µ, ν) = −a(λ, ν′)a(µ, ν′). Hence each closed component
requires an even number of dots and so (I) implies (II).

Note that one must take more care in case the zero vertex is contained in a
component of C with both am = 0 and a′m = 0. In this case the vertices of this
component are fixed in the GS-weight GS(ν) but in the combinatorics of GS the
possible weights all come with a sign [+] or [−] giving the needed factor 2 for this
component.

For the converse note that (II) implies that the circle diagram C is orientable,
each line in a unique way and each closed component in exactly two ways. The
same holds if we remove the dots. After applying T, any such orientation gives an
allowed labelling ν in the sense of Definition 6.8. We claim that the corresponding
value α = a(λ, ν)a(µ, ν) is equal to 1. By definition

α = (−1)x(λ)+x(µ)+z(λ,ν)+z(µ,ν)(−1)y(λ,ν)+y(µ,ν).

If C is a small circle, i.e. only contains a single cup and cap, then it has either
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no dots, hence no coloured cups and there is nothing to check. Or two dots and
two coloured cups (and the same indicator) and the statement is clear as well.
Otherwise, if C contains a kink without coloured cups and caps then we can remove
the kink to obtain a new λ and µ with the same value α attached. So we assume
there is no such kink, but then it contains a configuration of the form (dashed lines
indicate the colouring)

or

Removing the colouring and also the newly created uncoloured kink changes λ and
µ, but not the corresponding value α. Hence it must be equal to 1.

Note that if C is a component containing zero in case am = 0 and a′m = 0,
then in the GS combinatorics there is only one allowed orientation, but it comes
equipped with a sign [±]. Thus any possible weight that orients all other compo-
nents and uses the unique orientation on the component containing zero is counted
twice. If the component is a circle that gives again the total number of orientation
of the circle diagram C and each contributing 1 to dim HomF ′(P

g(λ), P g(µ)) =∑
ν a(λ, ν)a(µ, ν). If the component is a line and am = 0 and a′m = 0 they are all

doubled up thus giving the additional factor of 2 times the number of orientations.
Therefore (II) implies (I) and the remaining statements follow.

7.3. The Dimension Formula. We finally use Proposition 7.3 and Lemma 2.17
to deduce the dimension formula, also establishing Theorem 5.1.

Theorem 7.4 (Dimension formula). Consider G = OSp(r|2n) and λ, µ ∈ X+(G).
Let c(λ, µ) be the number of possible orientations of λµ. Then

dim HomF (P (λ), P (µ)) =

{
c(λ, µ) if λµ is not nuclear,
0 if λµ is nuclear.

Proof. Note that if λ and µ do not have the same core diagram then λµ is not
orientable and on the other hand by Propositions 6.2 and 6.3 it follows that P (λ)
and P (µ) are not in the same block hence the morphism space is zero, thus the
claim is automatic in this case. From now on assume that the core diagrams of
both λ and µ match.

For λ ∈ X+(G) let λg ∈ X+(g) such that am ≥ 0 in the notation from (2.20)
(with λ replaced by λg) with the same underlying hook partitions as λ. Now
consider H = HomF (P (λ), P (µ)) as in the theorem. We will freely use Proposi-
tion 2.18 to swap the roles of λ and µ.

Assume first that G = OSp(r|2n) with r odd. If λ = (λg,+) and µ = (µg,−)
(or the reversed signs), then H = {0} by Remark 2.8 and λµ is not orientable by
Proposition 4.15. If the signs agree then again by Remark 2.8 and Proposition 7.3
the claim follows.

Assume now that G = OSp(r|2n) with r even. Let first λ = (λg,±) and µ =
(µg)G. Then by Proposition 2.16 we have dimH = dim HomF ′(P

g(λg), P g(µg))
which is given by Proposition 7.3. The claim follows by comparing Proposition 7.3
with Proposition 4.16.
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Let now λ = (λg)G and µ = (µg)G. Again by Proposition 2.16 we have
dimH = dim HomF ′(P

g(λg), P g(µg)). Moreover by Proposition 4.11 λ and µ
have a (dotted) ray at zero. In particular, the circle diagram λµ has, apart from
a straight line L passing through zero and built from two dotted rays, only closed
components or rays containing no dots at all (since they are to the right of the
propagating line). Hence by Remark 3.19 the diagram is orientable if and only if
every component has an even number of dots. The number of orientations is then
obviously equal to 2c, where c is the number of closed components. Thus the claim
follows with Proposition 7.3.

Finally we have the case of signs for both weights which is the most involved
case. Let λ = (λg, ε) and µ = (µg, ε′). If λ nor µ contain zero in their core diagram
then it follows from Proposition 4.15 that λµ is only orientable if ε = ε′. On the
other hand Lemma 7.5 implies that we are in case (1) of Lemma 2.17 and the
morphism space for different signs is equal to zero. Now Propositions 2.16 and 7.3
imply that the dimension of the morphism space for equal signs is given by the
number of orientations.

If both, λ and µ, contain zero in their core diagram then position zero is
contained in a line or in a circle in the diagram λµ. Assume it is contained in a
circle then Lemma 7.5 implies that we are in case (1) of Lemma 2.17, but ε and
ε′ do not need to be equal and the dimension of the morphism space is zero in
case the signs are chosen such that the circle containing the zero vertex is not
orientable and thus, by Proposition 2.16, dimH = dim HomF ′(P

g(λg), P g(µg)) if
they are chosen such that the circle is orientable. Again the claim follows from
Proposition 7.3. To treat the case with position zero contained in a line in λµ,
note that Lemma 7.5 implies that we are in case (2) of Lemma 2.17 and for all
choices of ε and ε′ it holds dimH = 1

2 dim HomF ′(P
g(λg), P g(µg)) which is again

equal to the number of orientations of the diagram λµ by Proposition 7.3.

Lemma 7.5. Let (λ, ε), (µ, ε′) ∈ X+(G).

(1) If the circle diagram C = (pλ?, ε)(pµ?, ε′) has no line passing containing the

zero vertex and is orientable then dim HomF (P (λ, ε), P (µ, ε′)) 6= 0, whereas
the morphism space vanishes if one of the two signs is changed.

(2) If C is orientable and contains a line passing through the zero vertex, then
dim HomF (P (λ,±ε), P (µ,±ε′)) 6= 0 for all possible sign choices.

Proof. This follows from the classification theorem in [CH15] of indecomposable
summands in V ⊗d and will be proved in Part II.

8. Examples

8.1. The classical case: OSp(r|0). We start with the case OSp(3|0). The
irreducible modules in F are labelled by (0, 1)-hook partitions, that means par-
titions which fit into one column, all with an attached sign, see Proposition 2.6
and Lemma 2.21. The tail length is always zero, see Definition 2.23. The table
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in Figure (8.64) shows in the first and third column the partitions together with
their signs and next to it (on the right) the corresponding weight diagrams from
Definition 4.6. Since all non-core symbols are frozen, the associated cup diagram
consists only of rays, namely as follows

(∅,+) ◦ ∧ ∨ ∨ ∨ ∨ ∨ . . . (∅,−) ◦ ∨ ∨ ∨ ∨ ∨ ∨ . . .

( ,+) ∨ ◦ ∨ ∨ ∨ ∨ ∨ . . . ( ,−) ∧ ◦ ∨ ∨ ∨ ∨ ∨ . . .

( ,+) ∧ ∨ ◦ ∨ ∨ ∨ ∨ . . . ( ,−) ∨ ∨ ◦ ∨ ∨ ∨ ∨ . . .(
,+
)
∨ ∨ ∨ ◦ ∨ ∨ ∨ . . .

(
,−
)
∧ ∨ ∨ ◦ ∨ ∨ ∨ . . .

(1a,+)
a even

∧ ∨ . . . ∨a+1◦ ∨ . . . (1a,−)
a even

∨ ∨ . . . ∨a+1◦ ∨ . . . (2, 1a−1)

(1a,+)
a odd

∨ ∨ . . . ∨a+1◦ ∨ . . . (1a,−)
a odd

∧ ∨ . . . ∨a+1◦ ∨ . . . (2, 1a−1)

(8.64)

Remark 8.1 (Generalizing Weyl’s notion of associated partitions).

(1) Additionally, the last column in (8.64) shows the unique partitions pγ such
that pγ∞, obtained via S(pγ), is the weight diagram in the same row where
the first ∨ is changed to an ∧. Note that the partitions in the first and last
column together form a pair of associated partitions in the sense of Weyl,
i.e. their first rows are of length less or equal to r = 3 and together sum
up to r = 3, and the partitions coincide otherwise. Associated partitions
correspond to irreducible OSp(3|0) representations that are isomorphic when
restricted to SOSp(3|0). For more details on associated partitions see e.g.
[FH91, § 19.5]. Hence our diagrammatics could be seen as extending Weyl’s
notion of associated partitions.

(2) The same is true more generally for OSp(2m + 1|0). The two weight dia-
grams attached to the two different signs for a given partition differ precisely
at the first symbol. Changing this first symbol from an ∧ to a ∨ produces the
associated partition. A pair of associated partitions corresponds to represen-
tations that differ by taking the tensor product with the sign representation,
see [FH91, Exercise 19.23], which agrees with Proposition 2.6.

(3) In the case OSp(2m|0) the irreducible modules are labelled by partitions that
have at most m columns and they have a sign iff the partition has strictly less
than m columns, in which case the two partitions are associated in Weyl’s
sense. In case of a partition with m columns the partition is associated to
itself, which corresponds to the fact that the weight diagram starts with the
symbol 3 at position zero and therefore it does not obtain a sign in our
convention.

8.2. The smallest non-semisimple case: OSp(3|2). Let us come back to the
example from Section II, the category F(OSp(3|2)). The various diagrammatic
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weights are listed in the table below. We first list the (1, 1)-hook partitions, then
the sequence S(pλ) and the corresponding diagrammatic weights and cup diagrams.

pλ S(pλ) pλ∞ (pλ?,+) (pλ?,−)

∅ ( 1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,...) ∧ ∧? ? ? ∧ ∧ ∧ ∨ ∨ ··· ∧ ∧ ∨ ∨ ∨ ···

(− 1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,...) ∨ ∧? ? ? ∨ ∧ ∨ ∨ ∨ ··· ∨ ∧ ∧ ∨ ∨ ···

(− 3
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,...) ◦ ×? ? ? ◦ × ∧ ∨ ∨ ··· ◦ × ∨ ∨ ∨ ···

(− 1
2 ,

1
2 ,

5
2 ,

7
2 ,

9
2 ,...) × ◦? ? ? × ◦ ∧ ∨ ∨ ··· × ◦ ∨ ∨ ∨ ···

(− 3
2 ,

1
2 ,

5
2 ,

7
2 ,

9
2 ,...) ? ∨ ∧? ? ∨ ∨ ∧ ∨ ∨ ··· ∧ ∨ ∧ ∨ ∨ ···

(− 5
2 ,

1
2 ,

3
2 ,

7
2 ,

9
2 ,...) ? ? ∨ ∧? ∨ ∨ ∨ ∧ ∨ ··· ∧ ∨ ∨ ∧ ∨ ···

(− 7
2 ,

1
2 ,

3
2 ,

5
2 ,

9
2 ,...) ? ? ? ∨ ∧ ∨ ∨ ∨ ∨ ∧ ··· ∧ ∨ ∨ ∨ ∧ ···

From the weight diagram one can read of (using Proposition 6.2) the blocks
and the cup diagrams (including those from Section II) for the indecomposable
projective modules in a given block. Using now Theorem 5.1, Theorem B and the
multiplication rule for circle diagrams from [ES15], one deduces the shape and re-
lations for the quiver from Theorem A. The block containing L(∅,−) is equivalent
to the block B containing L(∅,+). All other blocks are obviously semisimple (and
of atypicality 0).

Remark 8.2. Although the category F = F(OSp(3|2)) decomposes as F+ ⊕F−
with the summands equivalent to F(SOSp(3|2)), we still prefer to work with the
whole F due to its connection to Deligne’s category, see [Del96], [CH15] and to the
Brauer algebras, in particular because (1.3) is not surjective for SOSp(3|2). To see
this observe that

(∅,+)

��

(∅,−)

��(
,+
)

]]

vv

and
(

,−
)

]]

vv
( ,+)

77

( ,−)

77

show pieces of the quiver corresponding to the two summands F±. On the vertices
one can see the labellings of the indecomposable projective modules P (λ) and the
corresponding associated partition. The number of boxes in the partitions or (if it
exists) the associated partition equals the tensor power d such that P (λ) appears
as a summand in V ⊗d. Observe that these numbers are always even for the quiver
on the left and odd for the quiver on the right, in agreement with Remark 2.7. If
one now restricts to G′, then resP (λ,+) ∼= resP (λ,−) and of course all non-trivial
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homomorphisms stay non-trivial. Therefore there are non-trivial morphism from
V ⊗d to V ⊗d

′
for some d, d′ such that d 6≡ d′mod 2. These morphisms cannot be

controlled by the Brauer or Deligne category.

8.3. The smallest even case: OSp(2|2) and OSp vs SOSp. We chose now
one of the most basic non-classical cases, to showcase the differences between the
OSp and the SOSp situation.

In case of SOSp(2|2) the block containing the trivial representation Lg(0) con-
tains all irreducible representations of the form Lg(±aε1 + aδ1). Abbreviating the
Lg(±aε1 + aδ1) by (±a|a) we obtain for it the quiver

· · ·
f−3 ,,

(−2|2)
g−3

jj

f−2 ,,
(−1|1)

g−2

ll

f−1
++
(0|0)

g−1

ll

f0 ++
(1|1)

g0

kk

f1 ++
(2|2)

g1

kk

f2 ** · · ·
g2

kk

subject to the relations fi+1 ◦ fi = 0 = gi ◦ gi−1 and gi ◦ fi = gi−1 ◦ fi−1.

The shape of the quiver and the relations follow from Proposition 7.3. Alter-
natively one can also use translation functors studied in [GS13].

Switching to OSp(2|2) corresponds here to taking, in a suitable sense, the
smash product of the original path algebra with the group Z/2Z generated by the
involution σ and consider the corresponding category of modules, see e.g. [RR85,
Example 2.1] for an analogous situation. More precisely we obtain the following:
the representation Lg(0) is doubled up to L(0,+) and L(0,−) while Lg(aε1 + aδ1)
and Lg(−aε1 + aδ1) give the same representation L((a|a)G), see Definition 2.10.
The results is that the following quiver describes the principal block of F (where
we used the elements from X+(G) as labels for the vertices),

(0,+)
f+

��
(1|1)G

g+

\\

g−vv

f1 ,,
(2|2)G

g1

ll

f2 ,,
(3|3)G

g2

ll

f3 --
(4|4)G · · ·

g3

ll

(0,−)

f−
77

subject to the same kind of zero relations as above. Moreover, the induced grading
via Corollary C corresponds exactly to the grading given by the path lengths.
Observe that the trivial block of atypicality 1 here is equivalent to the blocks of
atypicality 1 for OSp(3|2) (in contrast to the case of SOSp(3|2)).

8.4. Illustration of the Dimension Formula for OSp(4|4). In this section
we apply Theorem 5.1 respectively the Dimension Formula (Theorem 7.4) to cal-
culate the (graded) dimensions of the morphism spaces between certain projective
indecomposable modules in the principal block for OSp(4|4). In (8.65) one can
find a list of cup diagrams, whose weight sequences are all diagrammatically linked
and in the same block as the trivial representation with sign +.
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λ+
0 =

3 ∧ ∧ ∧ ∧ ∨ ···
λ+

1 =
3 ∨ ∧ ∧ ∧ ∨ ···

λ+
2 =

3 ∧ ∨ ∧ ∧ ∨ ···

λ−0 =
3 ∧ ∧ ∧ ∨ ∨ ···

λ−1 =
3 ∨ ∧ ∧ ∨ ∨ ···

λ−2 =
3 ∧ ∨ ∧ ∨ ∨ ···

λ+
3 =

3 ∧ ∧ ∨ ∧ ∨ ···

λ−3 =
3 ∧ ∨ ∨ ∧ ∨ ···

λ+
4 =

3 ∧ ∧ ∨ ∨ ∧ ···

λ−4 =
3 ∧ ∨ ∨ ∨ ∧ ···

λ5 =
3 ∨ ∨ ∧ ∧ ∨ ···

λ6 =
3 ∨ ∧ ∨ ∧ ∨ ···

(8.65)

For λ±0 , . . . , λ
±
4 above, the hook partition underlying λ±i is (i, 1i), while the hook

partition underlying λ±5 is (2, 2, 2) and for λ±6 it is (3, 2, 2, 1).

λ+
0 λ−0 λ+

1 λ−1 λ+
2 λ−2 λ+

3 λ−3 λ+
4 λ−4 λ5 λ6

λ+
0 E(q) 0 q2[2] 0 0 0 0 q2[2] 0 0 0 q2

λ−0 0 E(q) 0 q2[2] 0 0 q2[2] 0 0 0 0 q2

λ+
1 q2[2] 0 E(q) 0 q2[2] 0 q2 q2 0 0 q2 q2[2]

λ−1 0 q2[2] 0 E(q) 0 q2[2] q2 q2 0 0 q2 q2[2]

λ+
2 0 0 q2[2] 0 E(q) 0 q2[2] 0 0 0 q2[2] q2

λ−2 0 0 0 q2[2] 0 E(q) 0 q2[2] 0 0 q2[2] q2

λ+
3 0 q2[2] q2 q2 q2[2] 0 E(q) 0 q2[2] 0 q2 q2[2]

λ−3 q2[2] 0 q2 q2 0 q2[2] 0 E(q) 0 q2[2] q2 q2[2]

λ+
4 0 0 0 0 0 0 q2[2] 0 E(q) 0 0 q2

λ−4 0 0 0 0 0 0 0 q2[2] 0 E(q) 0 q2

λ5 0 0 q2 q2 q2[2] q2[2] q2 q2 0 0 E(q) q2[2]

λ6 q2 q2 q2[2] q2[2] q2 q2 q2[2] q2[2] q2 q2 q2[2] E(q)

Figure 6. Hilbert-Poincaré polynomials for graded homomorphism spaces

By pairing the cup diagrams from (8.65)in all possible ways to obtain circle
diagrams and checking the possible orientations and their degrees, one directly
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deduces the table in Figure 6 for the Hilbert-Poincaré polynomials of the morphism
spaces where we abbreviate E(q) = q2[2]2 and [2] = q−1 +q. Note that the Hilbert-
Poincaré polynomials of the endomorphism spaces are constant, namely equal to
E(q). This is a general phenomenon. By Lemma 4.13, each block B has a well-
defined defect def(B) that is the number of cups in each cup diagram. Then by
Theorem B and the definition of the diagram algebra, see [ES15, Theorem 6.2
and Corollary 8.8], we always have an isomorphism of algebras EndB(P (λ)) ∼=
C[X]/(X2)⊗ def with deg(X) = 2.

OSp(7|4) OSp(6|4)

pλ S(pλ)
(pλ,+)
(pλ,−)

S(pλ)
(pλ,+)
(pλ,−)

resp. pλ

∅ ( 3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,...)

◦ ∧ ∧ ∧ ∧ ∧ ···

◦ ∨ ∧ ∧ ∧ ∨ ··· (1,2,3,4,5,...)

◦ ∧ ∧ ∧ ∧ ∧ ···

◦ ∧ ∧ ∧ ∧ ∨ ···

( 1
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,...)

∧ ◦ ∧ ∧ ∧ ∨ ···

∧ ◦ ∧ ∧ ∧ ∧ ··· (0,2,3,4,5,...)

3 ◦ ∧ ∧ ∧ ∧ ···

3 ◦ ∧ ∧ ∧ ∨ ···

(− 1
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,...)

∨ ◦ ∧ ∧ ∧ ∧ ···

∨ ◦ ∧ ∧ ∧ ∨ ··· (−1,2,3,4,5,...)

◦ ∨ ∧ ∧ ∧ ∨ ···

◦ ∨ ∧ ∧ ∧ ∧ ···

(− 1
2 ,

3
2 ,

7
2 ,

9
2 ,

11
2 ,...)

∨ ∧ ◦ ∧ ∧ ∨ ···

∨ ∧ ◦ ∧ ∧ ∧ ··· (−1,1,3,4,5,...)

◦ × ◦ ∧ ∧ ∨ ···

◦ × ◦ ∧ ∧ ∧ ···

(− 1
2 ,

1
2 ,

7
2 ,

9
2 ,

11
2 ,...)

× ◦ ◦ ∧ ∧ ∧ ···

× ◦ ◦ ∧ ∧ ∨ ···
(−1,0,3,4,5,...)

3 ∨ ◦ ∧ ∧ ∨ ···

3 ∨ ◦ ∧ ∧ ∧ ···

(− 3
2 ,−

1
2 ,

7
2 ,

9
2 ,

11
2 ,...)

∨ ∨ ◦ ∧ ∧ ∧ ···

∨ ∨ ◦ ∧ ∧ ∨ ··· (−2,−1,3,4,5,...)

◦ ∨ ∨ ∧ ∧ ∧ ···

◦ ∨ ∨ ∧ ∧ ∨ ···

(− 1
2 ,

1
2 ,

5
2 ,

9
2 ,

11
2 ,...)

× ◦ ∧ ◦ ∧ ∨ ···

× ◦ ∧ ◦ ∧ ∧ ···
(−1,0,2,4,5,...)

3 ∨ ∧ ◦ ∧ ∨ ···

3 ∨ ∧ ◦ ∧ ∧ ···

(− 3
2 ,−

1
2 ,

1
2 ,

9
2 ,

11
2 ,...)

× ∨ ◦ ◦ ∧ ∧ ···

× ∨ ◦ ◦ ∧ ∨ ···
(−2,−1,0,4,5,...)

3 ∨ ∨ ◦ ∧ ∧ ···

Figure 7. OSp(7|4) and OSp(6|4)
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8.5. Some higher rank examples: OSp(7|4) and OSp(6|4). Finally we
calculate the weight and cup diagrams for the two special cases of OSp(7|4), with
δ
2 = 3

2 , and OSp(6|4), with δ
2 = 1.

Here the first column in Figure 7 lists the (3, 2)-hook partition, follows by two
columns showing first the sequence S(pλ) and then the associated weight and cup
diagrams (two if it includes a sign). One can see that in these examples again
defects greater than 1 occur. We leave it to the reader to check that the blocks
are all equivalent to blocks which we have seen already (namely to those with the
same atypicality).
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